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Introduction

      Mapping the pathways that give rise to metastasis is one of the key challenges of breast 
cancer research.  Recently, several large-scale studies have shed light on this problem through 
analysis of gene expression profiles to identify markers correlated with metastasis.  However, 
each study identifies a different set of marker genes, and it remains unclear how these genes in-
terrelate within a larger functional network.  Here, we apply a protein-network-based approach 
that identifies markers not as individual genes but as subnetworks extracted from protein inter-
action databases.  The resulting subnetworks identify new putative cancer genes and provide 
novel hypotheses for pathways involved in tumor progression.  Although genes with known 
breast cancer mutations are typically not detected through analysis of differential expression, 
they play a central role in the protein network by interconnecting many expression-responsive 
genes.  Beyond suggesting new pathways, we further demonstrate the accuracy of subnetwork 
markers in the classification of metastatic versus non-metastatic tumors. PerformanceSubnetworks Enriched for Hallmarks of Cancer

Subnetwork Extraction
For a given subnetwork M in the interaction network, the activ-
ity is a combined z-score derived from the expression of its indi-
vidual genes.

After overlaying the expression vector of each gene on its corre-
sponding protein in the interaction network, subnetworks with 
discriminative activities are found via a greedy search. Signifi-
cant subnetworks are selected based on a null distribution esti-
mated from 100 permuted subnetworks (seeded from the same 
node). The symbols g1’, g2’,…, gn’ represent genes in permuted 
expression matrices.

59 breast cancer susceptibility genes from OMIM, de Jong 
MM et al (J. Med. Genet. 2002) and Lymberis et al 
(Pharmacogenomics 2004)
88/455 subnetworks contain known cancer susceptibility 
genes, and 13 of them have > 1 known gene.
Disease genes that can only be detected using network infor-
mation include BRCA1, BRCA1 associated RING domain 1 
(BARD1), p53 (TP53), estrogen receptor ? (ESR1), nuclear re-
ceptor co-activator 3 (NCOA3), ATM, and XRCC3.
~94% of the subnetworks had higher activity levels in meta-
static breast tumors than in non-metastatic ones.
~33% of subnetworks contained member genes with diver-
gent directions of expression change.
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Subnetworks are informative of non-discriminative 
disease genes

Subnetworks demonstrate promising accuracy for 
sample classification

Color of node :  the change in expression 
Shape of node : diamond is significantly differentially-expressed and circle is not.
Known breast cancer susceptibility genes are marked by a blue asterisk

Research Design

Protein-protein interaction networks are used to assign sets of genes to discrete subnetworks.                     
(see Subnetwork Extraction)
Gene expression profiles of tissue samples drawn from each type of cancer (i.e., metastatic or non-
metastatic) are transformed into a “subnetwork activity matrix”. 
Subnetworks and the activity matrix are then used to identify disease genes and also used to train a classi-
fier for predicting new unknown samples.
Datasets:  57,235 interactions among 11,203 proteins and the expression profiles of 295 breast cancer pa-
tients previously reported by van de Vijver et al, NEJM 2002. 
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