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Introduction |

Mapping the pathways that give rise to metastasis is one of the key challenges of breast
cancer research. Recently, several large-scale studies have shed light on this problem through

each study identifies a different set of marker genes,and it remains unclear how these genes in-
terrelate within a larger functional network. Here, we apply a protein-network-based approach
that identifies markers not as individual genes but as subnetworks extracted from protein inter-
action databases. The resulting subnetworks identify new putative cancer genes and provide
novel hypotheses for pathways involved in tumor progression. Although genes with known

they play a central role in the protein network by interconnecting many expression-responsive
genes. Beyond suggesting new pathways, we further demonstrate the accuracy of subnetwork
markers in the classification of metastatic versus non-metastatic tumors.

analysis of gene expression profiles to identify markers correlated with metastasis. However,

breast cancer mutations are typically not detected through analysis of differential expression,
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X Protein-protein interaction networks are used to assign sets of genes to discrete subnetworks.
(see Subnetwork Extraction)

¥ Gene expression profiles of tissue samples drawn from each type of cancer (i.e.,, metastatic or non-
metastatic) are transformed into a “subnetwork activity matrix”

¥ Subnetworks and the activity matrix are then used to identify disease genes and also used to train a classi-
fier for predicting new unknown samples.

* Datasets: 57,235 interactions among 11,203 proteins and the expression profiles of 295 breast cancer pa-
tients previously reported by van de Vijver et al, NEJM 2002.
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For a given subnetwork M in the interaction network, the activ-
ity is a combined z-score derived from the expression of its indi-
vidual genes.

After overlaying the expression vector of each gene on its corre-
sponding protein in the interaction network, subnetworks with
discriminative activities are found via a greedy search. Signifi-
cant subnetworks are selected based on a null distribution esti-
mated from 100 permuted subnetworks (seeded from the same
node).The symbols g1} g2;...,gn’represent genes in permuted
expression matrices.
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% 88/455 subnetworks contain known cancer susceptibility

genes,and 13 of them have > 1 known gene.

mation include BRCA1, BRCAT1 associated RING domain 1
(BARD1),p53 (TP53), estrogen receptor ? (ESR1), nuclear re-
ceptor co-activator 3 (NCOA3), ATM, and XRCC3.

* ~94% of the subnetworks had higher activity levels in meta-
static breast tumors than in non-metastatic ones.

* ~33% of subnetworks contained member genes with diver-
gent directions of expression change.

Subnetworks demonstrate promising accuracy for
sample classification
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* Disease genes that can only be detected using network infor-
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