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Comprehensive protein-interaction mapping projects are

underway for many model species and humans. A key step in

these projects is estimating the time, cost and personnel

required for obtaining an accurate and complete map. Here we

modeled the cost of interaction-map completion for various

experimental designs. We showed that current efforts may

require up to 20 independent tests covering each protein pair

to approach completion. We explored designs for reducing this

cost substantially, including prioritization of protein pairs,

probability thresholding and interaction prediction. The best

experimental designs lowered cost by fourfold overall and

4100-fold in early stages of mapping. We demonstrate the

best strategy in an ongoing project in Drosophila melanogaster,

in which we mapped 450 high-confidence interactions using 47

microtiter plates, versus thousands of plates expected using

current designs. This study provides a framework for assessing

the feasibility of interaction mapping projects and for future

efforts to increase their efficiency.

Analysis of molecular networks has exploded in recent years. A wide
variety of technologies have been introduced for mapping networks
of gene and protein interactions, including yeast two-hybrid (Y2H)
assays1–8, affinity purification coupled to mass spectrometry9–11,
chromatin immunoprecipitation measurements of transcriptional
binding12–14, synthetic-lethal and suppressor networks15,16, expres-
sion quantitative trait loci17–20 and many others. Using these
technologies, network mapping projects are currently underway
for many model species2–4,7–13,15, microbial21–23 and viral24,25

pathogens, and humans5,6.
Mapping a complete gene or protein network evokes similar

challenges and considerations as mapping a complete genome
sequence. In the case of the human and model genome projects,
large-scale sequencing efforts have been accompanied by feasibility
studies26,27 that used mathematical formulations and pilot projects
to explore strategies for genome assembly and the work required for
each. In the case of interaction networks, similar feasibility studies
are just beginning28–30. Some of the questions to be addressed are:
what is the cost of completing an interactome map and what is
the best strategy for minimizing that cost? Given practical cost

constraints, how can the quality and coverage of interaction data be
maximized? How many independent assay types are needed? How
should direct pairwise tests for interaction be combined with
pooled screening? What is the effect of the test sensitivity on the
final cost? How should interaction predictions be incorporated, and
what is their effect on the mapping cost? Which specific improve-
ments to experimental and computational methods are likely to
have the largest effect?

To approach these questions, we modeled several standard and
alternative strategies for using pairwise protein-interaction experi-
ments to determine the interactome of the fruit fly, Drosophila
melanogaster. Our analysis showed that completing the interactome
map using sequential pairwise or pooled screening is probably too
costly to be practical in terms of the number of experi-
ments required. However, this cost can be reduced substantially
using a strategy that combines pooling with prioritized testing and
interaction prediction. We carried out several iterations of this
strategy to efficiently map 450 new high-confidence interactions
in Drosophila.

RESULTS
Interactome mapping: problem definition
In contrast to a genome, the interactome has been more difficult to
define. Some authors have argued31 that the ‘‘true interactome’’
should be defined as all possible interactions encoded by a genome:
that is, the set of all pairwise protein interactions that occur in at
least one biological condition or cell type. The assumption is that
every true interaction will be detectable by some assay and that
given enough independent measurements most of the interactome
could be detected. Many assay types have been described for
detecting protein-protein interactions, a few of which have been
adapted to large-scale screening1,31–33. In contrast, some inter-
actions may be immeasurable by any available assay or will not
arise in the conditions surveyed. Therefore, we use the term
‘mappable interactome’ for the subset of true pairwise interactions
that are reproducibly detectable by any given assay method or
combination of methods.

To define appropriate criteria for determining when an inter-
actome map is ‘complete’, we distinguish between ‘saturation’ and
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‘coverage’. Saturation measures the percentage of true interactions
that have been experimentally observed at least once. We define
coverage more strictly to mean the percentage of true interactions
that have been experimentally validated with high confidence such
that the percentage of false interactions (the false discovery rate;
FDR) is kept below a predetermined threshold. We treat ‘comple-
tion’ as achieving 95% coverage of the mappable interactome at 5%
FDR, which requires that the map include at least 95% of all true
interactions with no more than 5% of the reported inter-
actions being false.

A model of interactome coverage
We simulated several mapping strategies implementing various
basic and sophisticated features (Fig. 1; see Supplementary Fig. 1
online for flowcharts). We evaluated all strategies using a statistical
model based on naive Bayes to estimate saturation and coverage of
the Drosophila interactome as a function of the number of inter-
action tests. We programmed this model with the assumption that
the fly interactome contains approximately 105 interactions overall,
along with estimates for the false positive rate (FPR; the probability
that a non-interacting protein pair is reported as interacting) and
the false negative rate (FNR; the probability that an interacting pair
is reported as non-interacting). Although the magnitudes of these
errors are still under debate, previous studies2,5,28,34,35 have
reported Y2H error rates of FPR o 1% with FNR of 50–80%
(note that several of these studies erroneously refer to FDR as FPR).
Here we used 0.2% FPR and 66% FNR.

Owing to the high FNR of a particular assay, it becomes clear that
multiple assay types will likely be needed to achieve complete
coverage and that these assays should be independent or at least
only partially dependent. Although the precise correlations between

different assay types have not been well studied, complementarity
between assays has been widely assumed and occasionally demon-
strated: for instance, protein interactions have been shown to
be of substantially higher-confidence if they are detected in differ-
ent orientations (bait-prey versus prey-bait)2, in different
Y2H screens3,8,34, by different types of Y2H system such as
LexA-based versus Gal4-based35, or by both Y2H assay and co-
affinity purification9–11.

Basic mapping strategies in current use
We first simulated a ‘basic serial’ strategy (strategy 1), in which we
tested all pairs of proteins for interaction sequentially. Under this
formulation, achieving a saturation of 95% required eight
comprehensive screens, in which we tested each protein pair by
eight independent assays, equivalent to B7 � 108 pairwise tests,
assuming 13,600 protein-encoding genes in fly36 (Fig. 2a and
Table 1). Moreover, 93% of all observed interactions in this net-
work were false positives (including 99% of interactions observed
exactly once and 21% of interactions observed twice; Fig. 2b). The

Figure 1 | Simulating an interaction mapping

project. (a) At any given point in the project,

every pair of proteins is assigned an interaction

probability based on its experimental history

(initially these probabilities are set to background

or informed by predictions). The interaction

probabilities and experimental history are used to

design Y2H experiments in 96-well plate format

according to one of the strategies. The result

of this experiment is simulated based on the

detectability of the tested interactions (given the

assay type) and the pooling sensitivity. The new

experimental results are recorded in the history

and also used to update the interaction probabilities of the relevant protein pairs. (b) The pyramid represents the ordered list of protein pairs ranked by

probability. Most protein pairs have a low probability of interacting and only a few pairs will move to the top of the list with high probability of interaction.

Interactions with probability above an upper threshold are added to the mapped interactome, which is compared to the simulated ‘true network’ at intervals

of 1,000 plates for reporting coverage and FDR.
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Figure 2 | Analysis of the coverage and saturation of the fly interactome as a

function of the number of independent screens. (a) The percentage of true

interactions that are observed the indicated number of times as a function of

the number of times they are tested with independent assays. (b) The FDR of

interactions that are observed the indicated number of times as a function

of the number of times they are tested with independent assays. To achieve

FDR o 5% interactions should be observed at least twice when tested with

o5 independent assays, and at least three times when tested with 5–17

assays. (c) The effective coverage at FDR o 5% is shown by embedding the

observation threshold from the data presented in b into the curves shown in

a. Although saturation is achieved after 8 screens, 21 screens are required for

95% coverage at FDR o 5%.
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false positives predominate because, although the 0.2% FPR seems
low, the number of non-interacting protein pairs is far in excess of
the number of true interactions.

To ensure an overall FDR o 5%, we found that every interaction
must be reported by at least three independent assays. After eight
screens, 55% of the interactome was covered under these condi-
tions. We achieved the coverage goal of 95% only after 21
comprehensive pair-wise screens (Fig. 2c). We observed this overall
outcome, that the number of experiments required to reach full
coverage is two to three times that required to reach saturation,
over a range of error parameters (Supplementary Table 1 online).
Clearly, completing the interactome map under these conditions is
impractical, as it would require testing 92 million protein pairs 21
separate times.

To reduce the number of tests, assays such as Y2H typically use
pooled screens in which a single protein ‘bait’ is tested for inter-
action against pools of protein ‘preys’ (phase I)37. For pools that test
positive, pairwise tests are immediately conducted between the bait
and each prey in the pool (phase II; this second phase can also be
conducted by sequencing3,5). The benefit of pooling is that large
numbers of potential interactions can be sampled at relatively
low cost. This comes at the expense of FNR, as the chance a true
interaction is missed in the pool is higher than the chance it
would be missed by direct pairwise tests37. Through simu-
lation, we found that basic two-phase pooling (pooling strategies
2.1–2.4, in which we assumed the number of screens and pooling
sensitivity as indicated in Table 1) does indeed achieve a four- to
fivefold reduction in coverage cost over pairwise testing (B4 million
plates for pooling compared to B20 million plates for basic
serial). However, assuming the rate of interaction screening of a
typical laboratory (for example, B2,400 plate-matings per
person per year), pooled screens would still require approximately
1,700 person-years to complete the Drosophila protein-
interaction network.

Advanced mapping strategies
We next considered an interaction mapping strategy that, rather
than treating all protein pairs equally, maintains a rank-ordered list
of pairs according to their probabilities of interaction (thresholding
strategies 3.1–3.3, in which we assumed the pooling sensitivity as
indicated in Table 1). All probabilities started at the background
frequency of interaction for random protein pairs (as for basic-serial
and pooling strategies). We initially tested protein interactions using
pooled screening and, after each two-phase pooled experiment,
increased the probabilities for interactions that were observed and
decreased the probabilities for interactions that we tested but did
not observe. Unlike previous strategies, however, we declared
protein pairs with probability greater than an upper threshold
(95%) to be definite ‘interactors’ and removed them from subse-
quent testing (Fig. 1b). Likewise, we declared interactions with
probability beneath a lower threshold to be ‘non-interactors’ and
also removed them from further consideration. The motivation for
thresholding was to more quickly exclude the overwhelming num-
ber of non-interacting protein pairs. Finally, we defined ‘candidate
interactions’ as those with probabilities between the upper threshold
and background. When candidates were available they were always
tested immediately using pairwise assays, before resorting to pool-
ing, until their probabilities were pushed above the upper threshold
or below background. The motivation for prioritizing candidate
interactions was to more quickly cover the interactions likely to be
positive. Overall, thresholding resulted in more than a twofold cost
reduction compared to pooling (Table 1 and Fig. 3a).

Lastly, we considered whether computational prediction of
interactions, based on prior knowledge and data, could hasten
the time to interactome completion (prediction strategies 4.1–4.4,
in which we assumed the FPR, FNR and FDR as indicated in
Table 1). Various prediction methods have been proposed based on
evolutionary conservation38–40, that is, transfer of interaction
measurements from one species to another or based on integrating

Table 1 | Summary of the features and performance of the different strategies

Fruit fly interactome Human interactome

Strategy

Data

presented Pooling

Repeated

screens

Pooling

sensitivity

(%)

Thresholding

and

prioritization Prediction

Intermediate

(50%)

coverage cost

Complete

(95%)

coverage cost

Intermediate

(50%)

coverage cost

Complete

(95%)

coverage cost

Basic serial

1 Fig. 2c No NA NA No No 7.5M 19.9M 18.9M 51.8M

Pooling

2.1 Fig. 3a Yes 4 40 No No 1.6M 4.4M 4.2M 11.3M

2.2 Fig. 3a Yes 1 20 No No 1.6M 4.9M 3.9M 12.3M

2.3 Fig. 3a Yes 1 40 No No 1.4M 4.1M 3.5M 10.4M

2.4 Fig. 3a Yes 1 100 No No 1.4M 3.7M 3.5M 9.5M

Thresholding Fig. 3b

3.1 Fig. 3a Yes 1 20 Yes No 443K 1.9M 1.1M 4.8M

3.2 Fig. 3 Yes 1 40 Yes No 391K 1.7M 969K 4.3M

3.3 Fig. 3b Yes 1 100 Yes No 354K 1.5M 916K 3.9M

Prediction FPR, FNR, FDR (%)

4.1 10, 20, 99.2 Fig. 3b Yes 1 40 Yes Yes 249K 1.6M 611K 4.1M

4.2 1, 50, 95.0 Fig. 3b Yes 1 40 Yes Yes 111K 1.4M 293K 3.6M

4.3 5, 20, 98.3 Fig. 3b Yes 1 40 Yes Yes 126K 1.3M 313K 3.3M

4.4 1, 20, 92.2 Fig. 3b Yes 1 40 Yes Yes 28K 925K 69K 2.3M

Interaction costs are given in units of total number of plates (K, thousands; M, millions) required for 50% or 95% coverage. When 95% coverage is achieved more than once, the greatest cost is presented.
NA, not applicable.
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conservation with additional features such as co-expression and co-
annotation41–46. Such predictions impact the experimental design
by setting the initial probabilities of interaction for each protein
pair in lieu of background probabilities. In the prediction strategy,
we explored the effect of setting these probabilities using theoretical
prediction methods simulated over a range of predetermined
prediction accuracies (a range of different values for FPR, FNR
and corresponding FDR of the predictions). We found that even
predictors with very high FDRs could have a major impact on the
mapping cost (Fig. 3b and Table 1). For example, a predictor with
92.2% FDR gave a fourfold reduction in cost over pooling, with a
450-fold reduction in cost to achieve 50% coverage and hundreds-
fold cost savings in the early stages of mapping. Moreover, the
92.2% FDR means that even a predictor that makes 12 false
predictions for every true one can lead to a major reduction in
the cost of interactome completion. The best prediction method
required approximately 385 person-years to achieve 95% coverage
of the Drosophila protein network and 12 person-years to achieve
50% coverage. Thus, while obtaining full coverage of an inter-
actome map may still be some years away, a draft scaffold providing
half coverage might be feasibly achieved by a team of about 12
technicians working for one year.

From theory to practice: an experimental proof of concept
Given the good performance of the prediction strategy in simula-
tions, we explored an experimental implementation in which
Drosophila protein interactions were predicted using a method
based on cross-species analysis38 (Fig. 4a). According to this
method, existing protein-interaction networks in baker’s yeast,
nematode and fruit fly are aligned based on sequence similarity to
identify conserved interaction clusters, and these alignments are
used to transfer interactions that have been observed in some species
but not yet in others (Fig. 4b). A total of 1,294 interactions had
been previously predicted using this method38, each of which we
prioritized as a candidate with high initial probability (92.4%) based
on an estimated FDR of 7.6% (Supplementary Methods online).

As this prior probability was much greater than the background
probability of other protein pairs (0.1%), we began by using the

pairwise LexA Y2H assay47 to test all 606
predictions for which sequence-verified
clones were available. Of these, 136 tested
positive for interaction and 470 tested
negative. After each 96-well plate test
(seven plates total), we updated the
interaction probabilities, resulting in an
increase to 499.9% for pairs testing posi-
tive and a decrease to 90.5% for pairs testing
negative. As the 136 ‘positives’ now had
probability greater than the upper threshold
(95%), all of these could be added to the
interactome map and removed from sub-
sequent testing.

Although the remaining 470 predictions
had tested negative once, their high prob-
ability (90.5%) still prioritized them as can-
didate interactions. Therefore, as dictated by
the prediction strategy, we tested these pairs
immediately using a second assay type. For
this second assay, we ran the LexAY2H assay

in a ‘reverse’ orientation in which the two proteins cloned as bait
and prey, respectively, were exchanged as prey and bait. We tested
251 of the 470 predictions for which sequence-verified clones were
available in the ‘opposite orientation’. This resulted in 35 pairs
testing positive, elevating these interactions to probability 499.9%
and adding them to the map. The pairs that tested negative in the
reverse orientation were downgraded to 88.1% probability. Overall,
after performing the Y2H assay in both forward and reverse
orientations, we identified 171 new interactions out of 606 protein
pairs, a success rate of 28% (Supplementary Table 2 online).
Although we ended our experiment at this point, the prediction
strategy could be continued by next testing the ‘double negatives’
(pairs testing negative in both ‘orientations’ of LexA Y2H) using a
third type of assay such as Gal4-based Y2H.

A means of predicting additional protein interactions is to
probabilistically integrate many different lines of evidence into a
single classifier41–46. Thus, we applied a machine learning–based
classifier for predicting interactions that combined many relevant
features including gene expression, domain-domain interactions,
conserved protein-protein interactions, genetic interactions and
shared gene annotations (Supplementary Methods). We used this
approach to generate 24,798 high-confidence predictions. We
randomly selected 2,047 of these for testing using the forward-
orientation Y2H assay and, as above, retested the negative pairs
using the reverse-orientation Y2H assay (for which clones were
available). In total, using this procedure we added 279 new
high-confidence interactions to the map, a 13.6% success rate
(Supplementary Table 2). Combining both conservation-based
and multiple evidence–based predictions, we added 450 new
protein-protein interactions to the Drosophila interactomes map
based on data from experiments using 47 96-well plates (Fig. 3). To
establish the background rate of interaction, we also tested 2,354
randomly chosen pairs, 72 of which were positive in the Y2H assay,
yielding a 3% background rate. These results show that both types
of prediction are highly enriched for true interactions. Note that
even if all predicted interactions were true, in our model the
expected confirmation rate would be limited by the false negative
rate of the Y2H assay, equal to 1 � FNR ¼ 33%.

0

20

40

60

80

100

0 1 2 3 4 5

In
te

ra
ct

om
e 

co
ve

ra
ge

 (
%

)

Number of experiments (plates) in millions Number of experiments (plates) in millions

a

0

20

40

60

80

100

0 0.5 1 1.5 2

In
te

ra
ct

om
e 

co
ve

ra
ge

 (
%

)

In
te

ra
ct

om
e

co
ve

ra
ge

 (
%

)

Number of experimentsNumber of experiments

b

0

0.1

2

0.3

0 40 800 105 2 × 105

1
0.2

0.4

0.5

0.0

cFwd
cRev

mFwd

mRev

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1
4.2
4.3
4.4

450
interactions
(0.45%
coverage)

In
te

ra
ct

om
e

co
ve

ra
ge

 (
%

)

Strategy:

Figure 3 | Fly and human interactome coverage costs for different experimental strategies.

(a) Comparison of the pooling strategies 2.1–2.4 with thresholding strategies 3.1–3.3, which combine

pooling with direct experiments based on thresholding and prioritization. Inset, close-up view showing

the number of plates required to add the first 450 interactions to the map using pooling. (b) Performance

of the prediction strategies 4.1–4.4 over a range of FPR, FNR and FDR of the predictions. Inset, close-up

view including an experimental proof-of-principle based on predictions from network conservation (cFwd,

cRev) or multiple types of evidence (mFwd, mRev). Fwd and Rev denote the experiments performed using

forward and reverse Y2H assays, respectively.
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Testing the conditional independence between assay types
An underlying assumption of our simulations is that different assay
types are conditionally independent. To examine the extent to which
this assumption holds, we compared Y2H data for protein pairs
tested in both forward and reverse orientations. Overall, we
obtained Y2H test results in both orientations for 309 conserva-
tion-based predictions (including data reported above as well as that
from additional tests; Supplementary Data online). Of these, we
observed 58 positives in the Y2H assay in the forward orientation
and 50 positives in the reverse orientation, for an average positive
rate of r = 17% ((58 + 50) / (309 � 2)). We identified 15 positives in
both orientations, representing 4.9% of the tests. Assuming all
predictions are true interactions, this percentage is very close to
that predicted by conditional independence, for which 3.1% of tests
are expected to be positive in both orientations (r2). If some
predictions are not true as expected, the percentages come
into even better agreement; for example, a prediction FDR of
20% predicts that 4.8% positives would arise in both orientations.
We performed a similar analysis on 1,572 combined-evidence
predictions that we tested in both orientations, leading to similar
agreement with the conditional independence assumption.

DISCUSSION
The interactions predicted by cross-species conservation were at
least as accurate as we had assumed in our simulations. In contrast,
their power to prioritize interactions is dependent on the network
coverage in other species, and the long-term viability of this
approach will depend on obtaining greater numbers of predictions
than the 1,294 that are currently available. As interactome maps
progress across an ever-widening array of species, these maps might
be dynamically cross-compared to continually generate sufficient
numbers of candidate interactions for testing. The second set of

predictions, made by integrating various
lines of evidence, had a lower success rate
than the predictions based solely on con-
servation. Their potential utility is higher,
however, as the number of available predic-
tions is nearly 20 times that of the conserva-
tion-based predictions and could be
increased further by including lower-confi-
dence predictions. Even with a lower success
rate, the performance of the integrated clas-

sifier was superior to the best theoretical predictor we simulated.
Predictions lead to a lower interactome mapping cost for two

reasons. First, predicted protein pairs are much more likely than
arbitrary pairs to be true. Second, protein pairs with high prior
probabilities do not require repeated positive measurements to
confirm them as true interactions. Both effects underlie the finding
that 450 new predicted interactions could be added to the inter-
action map using just 47 microtiter plates. In contrast, the pooling
strategy would require nearly 105 plates to add this number of
interactions to the map.

One might intuitively object that, rather than test predicted
interactions, a better strategy would focus on the ‘novel’ areas of the
interactome that have never before been suggested by any species or
dataset. The problem with such an approach is that it would very
quickly produce an interactome map with a very high error rate.
Conversely, the rationale behind the thresholding and prediction
strategies is that one should first clean up the map by validating
predicted interactions using real experiments, and only then resort
to testing random protein pairs in pools.

A second objection might be that prioritizing candidate inter-
actions requires the corresponding Y2H baits and preys to be
rearrayed in microtiter plates in different orders over the course
of an interaction mapping project. Although we did not include
the cost of rearraying in our analysis, in our laboratory (Finley)
these costs are greatly alleviated through robotic transfer systems.
Certainly, failure to rearray leads to an about fourfold increase
in cost and an about tenfold increase in the early stages of
mapping (Table 1).

Regardless, mapping the interactome remains a daunting task.
Our study makes it clear that achieving 95% coverage of an
interactome requires many more screens than one pass through
all pools or over all protein pairs. If complete coverage is to be
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Figure 4 | Design and implementation of the

prediction strategy for mapping the interactome.

(a) State diagram for the prediction strategy,

which combines interaction predictions with

direct and pooled experiments to reduce the

intermediate and total costs of interactome

mapping. (b) Making conservation-based

interaction predictions as reported in reference 38.

Colored nodes and links represent proteins and

protein-protein interactions, respectively,

measured for yeast (orange), worm (green) or

fly (blue). Gray horizontal dashed lines connect

sequence-similar protein families across the three

species. Representative plates are shown for tests

of conservation-based predictions using the

lacZ reporter (5-bromo-4-chloro-3-indolyl-b-D-

galactoside (X-Gal) cleavage assay; left) or the

LEU2 reporter (LexA-based system; right).
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obtained in the near future, it will be necessary to invoke better
strategies for experimental design, technologies reporting fewer
false negatives or both. In terms of experimental design, we
showed that the cost of completion is reduced substantially by
carefully ordering pooled screens. In terms of technology, our
study underscores the importance of decreasing the FNR or of
different assays that provide independent samples of a protein
pair. Even if the error rates are lower than assumed here,
advanced mapping strategies are still likely to be worthwhile
(Supplementary Table 1). Here we used two types of Y2H assay,
forward and reverse orientations, to obtain multiple samples
which appear largely independent. If the assays were partially
dependent, multiple tests might still be worth the cost as long as
they were not perfectly correlated (and the dependence could
be handled quantitatively using a statistical model). In our study,
the conditional independence assumption leads to a best-case
scenario or lower bound on the number of interaction tests that
will likely be required to achieve full coverage of an interactome.
Additional work will be needed to better characterize the relative
dependencies among the wide range of other interaction assays that
are now available: if the presently available assays are highly
dependent, then the required number of tests will be greater than
we estimated here.

METHODS
Simulation procedure. ‘True’ reference interactomes for fly and
human were generated by random sampling of interactions from
the set of all possible pairs of proteins using the interaction
probabilities in the String database45. Protein pairs not included
in the String database were sampled using a low background
probability such that the total number of interactions in the
sampled interactomes agreed with current estimates of inter-
actome sizes29 (B100,000 fly interactions and B260,000 human
interactions). The detectability of each protein pair was indepen-
dently sampled for each new assay type (representing a new type of
measurement technology or new bait/prey orientation) using a
66% FNR for true interactions and 0.2% FPR for false interactions
(corresponding to 82% FDR). Once an interaction was defined as
detectable or undetectable, direct pairwise experiments were
assumed to be 100% reproducible for a given protein pair and
assay. For pooled assays, each detectable interaction in the sample
space of a pool was assumed to be observed in the pool with
probability equal to the ‘pooling sensitivity’ (Table 1). Pools with
at least one observed interaction were declared positive. For each
strategy, after every 1,000 experiments the mapped interactomes
were compared to the ‘true’ interactomes and the coverage and
FDRs were recorded.

Yeast two-hybrid test of predicted interactions. We used the
LexA-based Y2H mating assay47 using sequence-verified clones as
previously described35 (Supplementary Methods).

Data availability. The International Molecular Exchange
Consortium through IntAct48: IM-9552 (new protein inter-
actions identified). The data are also available at Drosophila
Interactions Database: Finley YTH v3.0.

Additional methods. Descriptions of the interaction probability
model, the combined-evidence method for interaction prediction,

the computation of thresholds and the Y2H test protocol are
available in Supplementary Methods.

Note: Supplementary information is available on the Nature Methods website.

ACKNOWLEDGMENTS
We thank S. Bandyopadhyay for critical reading of the manuscript, I. Bronner,
K. Gulyas, B. Mangiola and H. Zhang for expert technical assistance with the
two-hybrid assays, and R. Karp and R. Sharan for discussions of earlier versions
of this work. This work was supported by US National Institutes of Health grants
RR018627, GM070743 and HG001536.

AUTHOR CONTRIBUTIONS
A.S.S. and T.I. formulated the probabilistic model and performed the simulations.
J.Y., K.R.G. and R.L.F. generated all new reported Y2H data. A.S.S., R.L.F. and T.I.
wrote the paper.

Published online at http://www.nature.com/naturemethods/
Reprints and permissions information is available online at
http://npg.nature.com/reprintsandpermissions/

1. Fields, S. High-throughput two-hybrid analysis. The promise and the peril. FEBS J.
272, 5391–5399 (2005).

2. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302,
1727–1736 (2003).

3. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein
interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

4. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science
303, 540–543 (2004).

5. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein
interaction network. Nature 437, 1173–1178 (2005).

6. Stelzl, U. et al. A human protein-protein interaction network: a resource for
annotating the proteome. Cell 122, 957–968 (2005).

7. Suzuki, H. et al. Protein-protein interaction panel using mouse full-length cDNAs.
Genome Res. 11, 1758–1765 (2001).

8. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in
Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

9. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery.
Nature 440, 631–636 (2006).

10. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature 415, 141–147 (2002).

11. Krogan, N.J. et al. Global landscape of protein complexes in the yeast
Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

12. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome.
Nature 431, 99–104 (2004).

13. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and
methylation in yeast. Cell 122, 517–527 (2005).

14. Ren, B. et al. Genome-wide location and function of DNA binding proteins.
Science 290, 2306–2309 (2000).

15. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion
mutants. Science 294, 2364–2368 (2001).

16. Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. A strategy for
extracting and analyzing large-scale quantitative epistatic interaction data.
Genome Biol. 7, R63 (2006).

17. Bao, L. et al. Combining gene expression QTL mapping and phenotypic spectrum
analysis to uncover gene regulatory relationships. Mamm. Genome 17, 575–583
(2006).

18. Chesler, E.J., Lu, L., Wang, J., Williams, R.W. & Manly, K.F. WebQTL: rapid
exploratory analysis of gene expression and genetic networks for brain and
behavior. Nat. Neurosci. 7, 485–486 (2004).

19. Petretto, E. et al. Heritability and tissue specificity of expression quantitative
trait loci. PLoS Genet. 2, e172 (2006).

20. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man.
Nature 422, 297–302 (2003).

21. Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. Nature
409, 211–215 (2001).

22. Parrish, J.R. et al. A proteome-wide protein interaction map for Campylobacter
jejuni. Genome Biol. 8, R130 (2007).

23. LaCount, D.J. et al. A protein interaction network of the malaria parasite
Plasmodium falciparum. Nature 438, 103–107 (2005).

24. Uetz, P. et al. Herpesviral protein networks and their interaction with the human
proteome. Science 311, 239–242 (2006).

25. von Brunn, A. et al. Analysis of intraviral protein-protein interactions of the SARS
coronavirus ORFeome. PLoS ONE 2, e459 (2007).

60 | VOL.6 NO.1 | JANUARY 2009 | NATURE METHODS

ANALYSIS
©

 2
00

9 
N

at
ur

e 
A

m
er

ic
a,

 In
c.

 A
ll 

ri
g

ht
s 

re
se

rv
ed

. 

http://www.nature.com/naturemethods/
http://www.nature.com/naturemethods/
http://npg.nature.com/reprintsandpermissions/


26. Lander, E.S. & Waterman, M.S. Genomic mapping by fingerprinting random clones:
a mathematical analysis. Genomics 2, 231–239 (1988).

27. Weber, J.L. & Myers, E.W. Human whole-genome shotgun sequencing. Genome
Res. 7, 401–409 (1997).

28. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-
protein interactions. Nature 417, 399–403 (2002).

29. Hart, G.T., Ramani, A.K. & Marcotte, E.M. How complete are current yeast and
human protein-interaction networks? Genome Biol. 7, 120 (2006).

30. Lappe, M. & Holm, L. Unraveling protein interaction networks with near-optimal
efficiency. Nat. Biotechnol. 22, 98–103 (2004).

31. Cusick, M.E., Klitgord, N., Vidal, M. & Hill, D.E. Interactome: gateway into systems
biology. Hum. Mol. Genet. 14 (special issue 2), R171–R181 (2005).

32. Kocher, T. & Superti-Furga, G. Mass spectrometry-based functional proteomics:
from molecular machines to protein networks. Nat. Methods 4, 807–815 (2007).

33. Parrish, J.R., Gulyas, K.D. & Finley, R.L. Jr. Yeast two-hybrid contributions to
interactome mapping. Curr. Opin. Biotechnol. 17, 387–393 (2006).

34. Deane, C.M., Salwinski, L., Xenarios, I. & Eisenberg, D. Protein interactions: two
methods for assessment of the reliability of high throughput observations. Mol.
Cell. Proteomics 1, 349–356 (2002).

35. Stanyon, C.A. et al. A Drosophila protein-interaction map centered on cell-cycle
regulators. Genome Biol. 5, R96 (2004).

36. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287,
2185–2195 (2000).

37. Zhong, J., Zhang, H., Stanyon, C.A., Tromp, G. & Finley, R.L. Jr. A strategy for
constructing large protein interaction maps using the yeast two-hybrid system:
regulated expression arrays and two-phase mating. Genome Res. 13, 2691–2699
(2003).

38. Sharan, R. et al. Conserved patterns of protein interaction in multiple species.
Proc. Natl. Acad. Sci. USA 102, 1974–1979 (2005).

39. Matthews, L.R. et al. Identification of potential interaction networks using
sequence-based searches for conserved protein-protein interactions or
‘‘interologs’’. Genome Res. 11, 2120–2126 (2001).

40. Boulton, S.J. et al. Combined functional genomic maps of the C. elegans DNA
damage response. Science 295, 127–131 (2002).

41. Ben-Hur, A. & Noble, W.S. Kernel methods for predicting protein-protein
interactions. Bioinformatics 21 Suppl 1, i38–i46 (2005).

42. Jansen, R. et al. A Bayesian networks approach for predicting protein-
protein interactions from genomic data. Science 302, 449–453
(2003).

43. Lee, I., Date, S.V., Adai, A.T. & Marcotte, E.M. A probabilistic functional network
of yeast genes. Science 306, 1555–1558 (2004).

44. Lu, L.J., Xia, Y., Paccanaro, A., Yu, H. & Gerstein, M. Assessing the limits of
genomic data integration for predicting protein networks. Genome Res. 15,
945–953 (2005).

45. von Mering, C. et al. STRING: a database of predicted functional associations
between proteins. Nucleic Acids Res. 31, 258–261 (2003).

46. Yu, H., Paccanaro, A., Trifonov, V. & Gerstein, M. Predicting interactions in protein
networks by completing defective cliques. Bioinformatics 22, 823–829
(2006).

47. Finley, R.L. Jr & Brent, R. Interaction mating reveals binary and ternary
connections between Drosophila cell cycle regulators. Proc. Natl. Acad. Sci. USA
91, 12980–12984 (1994).

48. Kerrien, S. et al. IntAct–open source resource for molecular interaction data.
Nucleic Acids Res. 35, D561–D565 (2007).

NATURE METHODS | VOL.6 NO.1 | JANUARY 2009 | 61

ANALYSIS
©

 2
00

9 
N

at
ur

e 
A

m
er

ic
a,

 In
c.

 A
ll 

ri
g

ht
s 

re
se

rv
ed

. 


	Cost-effective strategies for completing the interactome
	RESULTS
	Interactome mapping: problem definition
	A model of interactome coverage
	Basic mapping strategies in current use

	Figure 1 Simulating an interaction mapping project.
	Figure 2 Analysis of the coverage and saturation of the fly interactome as a function of the number of independent screens.
	Advanced mapping strategies

	Table 1 Summary of the features and performance of the different strategies
	From theory to practice: an experimental proof of concept

	Figure 3 Fly and human interactome coverage costs for different experimental strategies.
	Testing the conditional independence between assay types

	DISCUSSION
	Figure 4 Design and implementation of the prediction strategy for mapping the interactome.
	METHODS
	Simulation procedure
	Yeast two-hybrid test of predicted interactions
	Data availability
	Additional methods

	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	References




