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Abstract

Systems biology provides a framework for assembling models of biolog-
ical pathways from systematic measurements. Since the field was first
introduced a decade ago, considerable progress has been made in tech-
nologies for global cell measurement and in computational analyses of
these data to map and model cell function. It has also greatly expanded
into the translational sciences, with approaches pioneered in yeast now
being applied to elucidate human development and disease. Here, we
review the state of the field with a focus on four emerging applications
of systems biology that are likely to be of particular importance during
the decade to follow: (a) pathway-based biomarkers, (b) global genetic
interaction maps, (c) systems approaches to identify disease genes, and
(d ) stem cell systems biology. We also cover recent advances in soft-
ware tools that allow biologists to explore system-wide models and to
formulate new hypotheses. The applications and methods covered in
this review provide a set of prime exemplars useful to cell and develop-
mental biologists wishing to apply systems approaches to pathways of
interest.

23.1

Review in Advance first posted online  
on July 6, 2010. (Changes may  
still occur before final publication  
online and in print.) 

Changes may still occur before final publication online and in print.

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
10

.2
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
n 

D
ie

go
 o

n 
09

/0
8/

10
. F

or
 p

er
so

na
l u

se
 o

nl
y.



CB26CH23-Ideker ARI 26 June 2010 20:15

Contents

INTRODUCTION . . . . . . . . . . . . . . . . . . 23.2
Systems Biology: A Framework for

Modeling Biological Systems
from Systematic Measurements . . 23.2

A Systems Approach to the Systems
Biology Literature . . . . . . . . . . . . . . 23.4

SYSTEMS APPROACHES TO
MOLECULAR DIAGNOSTICS . . 23.5

GENETIC INTERACTION MAPS:
A TOOLBOX WITH
IMPLICATIONS FOR
CANCER AND DISEASE. . . . . . . . . 23.8
Detection of Genetic Interactions in

Model Species and Humans . . . . . 23.8
Characteristics of Genetic

Networks . . . . . . . . . . . . . . . . . . . . . . . 23.9
Integration with Physical

Interactions. . . . . . . . . . . . . . . . . . . . . 23.9
Emerging Genetic Interaction-Based

Approaches to Cancer Therapy . .23.11
SYSTEMS APPROACHES TO

IDENTIFY DISEASE GENES . . . .23.12
STEM CELL SYSTEMS BIOLOGY

AND COMPUTATION OF
CELL FATE . . . . . . . . . . . . . . . . . . . . . .23.14

SYSTEMS BIOLOGY SOFTWARE. .23.16
SUMMARY AND CONCLUSIONS .23.19

INTRODUCTION

Nearly a decade has passed since systems biol-
ogy was introduced into the language of mod-
ern biology (Ideker et al. 2001, Kitano 2002).
In that time it has expanded greatly in breadth;
it now embraces much of the life sciences
and is used to address many research prob-
lems across humans and diverse model species
(Figure 1). Systems biology has also deepened
considerably; many more systematic technolo-
gies and methods, both experimental and com-
putational, are in use now than were available a
decade ago.

Yet the field in many ways remains in its in-
fancy. The available genome-scale experimen-

tal tools are still in an exponential development
phase; new technologies turn the field on its
head every few years. Even using current as-
says, bioinformatic methodology lags signifi-
cantly behind, such that many more data are
generated than possibly can be analyzed or in-
terpreted. Moreover, and perhaps most hum-
bling, the field still has not reached consensus
on the definition of systems biology. Part of
the reason is that systems biology is in vogue,
and some have found it easier to change its
definition than to change their research habits.
However, it is evident that interesting changes
are afoot in biology, and given the newness of
some these changes, building consensus may
take time.

Systems Biology: A Framework for
Modeling Biological Systems from
Systematic Measurements

Systems approaches, by necessity, involve sys-
tematic data. It is impossible to study a bio-
logical system as a whole without them. On
one hand, the ability to make genome-wide (or
proteome-wide or transcriptome-wide) mea-
surements on a system is arguably the single
greatest force driving the rise of systems bi-
ology. On the other hand, systems biology is
not only about genome-scale measurements; it
is about a philosophy and a hypothesis-driven
approach for experimental design and analy-
sis (Ideker et al. 2001). Therefore, systems bi-
ology does not apply to genome-scale studies
that are focused solely on discovery. Rather,
it is a framework for using genome-scale ex-
periments to perform predictive, hypothesis-
driven science (Figure 2). Using genome-scale
data to test hypotheses is nontrivial because
it requires that the hypotheses themselves be
genome-scale. This, in turn, only becomes pos-
sible with a genome-scale model of the system.
Of course, systematic technologies are not the
only means of measuring biological systems. It
is critical that systems-level models are con-
sistent with, and validated by, detailed single-
molecule measurements and literature.
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Figure 1
Meta-analysis of systems biology publications over the past decade. (a) A map of the 20 leading topics in
systems biology during the years 2000–2009. The map represents a 2D scaling of the mutual information
score between topics, i.e., closely associated topics in the map represent similar themes. The size of the text
is roughly proportional to the number of papers. The color gradient indicates a relative increase in citations
( from blue to purple to red ). Blue indicates topics that were more common prior to 2007; red indicates topics
that have been more common since 2007 (see the Supplemental Methods Section for more details on the
method and topic word lists). (b) Gray bars show the number of articles indexed in PubMed per year that are
labeled with the Medical Subject Heading (MeSH) “Systems Biology.” As a reference, the gold dashed line
shows the number of total articles in thousands indexed in PubMed per year.

Enabled by advances in genome-scale
technology, the available molecular data
are growing exponentially. A property of
exponential growth is that the amount of data
describing a pathway that will be collected in

the next year is on par with the amount of data
that has ever been collected about that pathway
in the history of science. In light of this fact,
clearly the main challenge confronting the field
is not to look back (incorporating previous
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Figure 2
Overview of the experimental process in classical
biology (top) versus systems biology (bottom).

findings is critical but will be comparatively
easy) but to look forward to how one might
plan and interpret the mountains of new data
that soon will be generated.

Another principle emerging from systems
biology research is that it is not enough to map
out the physical components and interactions
of a system—one must also map how informa-
tion propagates through this system in response
to perturbations. Similarly, it has proven ex-
tremely difficult to infer physical or structural
interactions in the system from functional data
alone (e.g., expression profiles). Thus, systems
approaches must necessarily investigate both
the physical and functional aspects of the sys-
tem. For this reason, many approaches seek to
integrate multiple data sets, each of which con-
tains a different slice of information about sys-
tem structure or state.

Finally, as previous authors have done, we
distinguish between systems biology and syn-
thetic biology. Systems biology attempts to un-
derstand the workings of natural biological sys-
tems; synthetic biology uses this understanding
to construct new genetic and biochemical sys-
tems in vivo or in vitro. Several good reviews of
recent progress in synthetic biology are avail-
able elsewhere (Andrianantoandro et al. 2006,
Benner & Sismour 2005).

A Systems Approach to the
Systems Biology Literature

To obtain a systems-level map the current sta-
tus of the field, we performed a meta-analysis
of all systems biology publications recorded
in PubMed over the past decade (Figure 1a).
The field has grown from a handful of publi-
cations published in 2001 to nearly 2,000 pub-
lished in 2009. Next, we mined the abstracts of
systems biology articles published from 2000
to 2009 to extract popular research topics
(Figure 1b). We estimated the trends in publi-
cation over the decade and compared the top-
ics prominent in systems biology publications
prior to 2007 to those in the latter part of
the decade (see the Supplemental Methods
Section for details; follow the Supplemental
Material link from the Annual Reviews home
page at http://www.annualreviews.org). Cer-
tain topics, such as gene expression analyses
and evolutionary biology, have maintained their
places as mainstays of systems biology (Figure
1a). Others are on the rise, such as cancer re-
search, stem cell, and network biology. A few
topics, such as protein structure and compar-
ative genomics, show a decline in publication
rates. Nonetheless, the increase in breadth and
versatility of research carried out under the ban-
ner of systems biology sends a clear message.

In the remainder of this review, we describe
progress in systems approaches for mapping
biological pathways and for using these maps
in biomedical research. Guided by topics in
the systems biology meta-map (Figure 1a),
we focus on four areas in particular. All of
these are strongly emerging topics in systems
biology over the past few years: pathway-based
biomarkers and diagnosis, systematic measure-
ment and modeling of genetic interactions,
systems biology of stem cells, and identifi-
cation of disease genes. Each of these topics
has recently been the focal point of significant
research progress brought about because of
innovative use of systems-wide measurement
methods and computational approaches. In
addition, we review the software tools available
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for network visualization and interactive
exploration of systems biology data, which can
be used to formulate hypotheses for further
investigation and discovery.

SYSTEMS APPROACHES TO
MOLECULAR DIAGNOSTICS

A first area in which systems approaches have
gained recent traction is in the field of molec-
ular diagnostics. For complex diseases such as
cancer, gene and protein expression profiling
have become the methods of choice for iden-
tifying diagnostic biomarkers able to diagnose
the severity of disease and predict future dis-
ease outcomes (reviewed by Asyali et al. 2006,
Quackenbush 2006, Cheang et al. 2008). Mark-
ers are selected by scoring each individual gene
or protein on how well its expression pattern
can discriminate between different classes of
disease or between cases and controls. The dis-
ease status of new patients is predicted using
classifiers tuned to the expression levels of the
markers.

Despite their promise, expression-based di-
agnostics continue to face serious challenges
owing to their questionable accuracy when
predicting patient outcomes in some diseases
(Ein-Dor et al. 2005, Sotiriou & Piccart 2007).
Problems are thought to arise as the result
of at least two factors: cellular heterogeneity
within tissues and genetic heterogeneity across
patients. The impact of cellular heterogene-
ity depends on the nature of the disease. For
some diseases, such as B-cell lymphoma, the
diseased cell population is well defined such that
it is possible to harvest a relatively pure cell
population yielding a distinct expression sig-
nature, or to subdivide a mixed B cell popu-
lation on the basis of expression. In other dis-
eases, such as breast cancer, it has been difficult
to cleanly separate tumor from normal cells,
such that the resulting expression profile repre-
sents an average signal diluted over a mixed cell
population.

In contrast, genetic heterogeneity refers to
the fact that the same genes may not be dys-
regulated in each patient. For instance, patient

A may have protein A dysregulated, patient B
may have protein B dysregulated, patient C may
have protein C dysregulated, and so on. Given
this disparity across patients who nevertheless
may have the same clinical outcomes (e.g., ag-
gressive cancer), classification algorithms have
trouble because no single marker is indicative
of the status of all (or even most) patients.

To address these problems and improve
on expression-based diagnostics, several groups
have begun to integrate patient expression pro-
files with system-wide maps of the pathways in
a cell (Anastassiou 2007, Calvano et al. 2005,
Doniger et al. 2003, Draghici et al. 2003, Nibbe
et al. 2009, Pavlidis et al. 2004, Tian et al. 2005,
Ulitsky et al. 2008a, Wei & Li 2007). Depend-
ing on the scenario, such pathway maps can in-
volve signaling cascades, transcriptional regu-
lation, or metabolic reactions. They can be as
detailed as a series of discrete actions among
proteins that lead to a defined end point or
functional outcome, or as abstract as a func-
tional annotation on a set of genes. Pathway
information provides an overarching layer of
organization that can tie seemingly disparate
expression responses together into a common
pattern. For instance, although any protein A,
B, or C may indicate an aggressive form of dis-
ease, the knowledge that A, B, and C form a
coherent module—e.g., they are subunits of a
common protein complex, successive enzymes
in a metabolic pathway, or successive steps in a
signal transduction cascade—allows us to for-
mulate new biomarker functions that take all of
these proteins into account. Some approaches
draw this knowledge from known pathways cu-
rated from the literature (Subramanian et al.
2005, Vert & Kanehisa 2003); others incor-
porate pathway knowledge from unbiased net-
works of physical protein-protein interactions
(Chuang et al. 2007, Ma et al. 2007, Taylor
et al. 2009, Tuck et al. 2006). In either case,
the goal is to identify biomarkers not as lists of
individual genes or proteins but as functionally
related groups of genes or proteins whose ag-
gregate expression accounts for the phenotypic
differences between the different populations
of patients. Unlike conventional expression

www.annualreviews.org • A Decade of Systems Biology 23.5

R

E V I E
W

S
 

I
N

 

A
D V A N

C
E

 

Changes may still occur before final publication online and in print.

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
10

.2
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
n 

D
ie

go
 o

n 
09

/0
8/

10
. F

or
 p

er
so

na
l u

se
 o

nl
y.



CB26CH23-Ideker ARI 26 June 2010 20:15

diagnostics based on individual genes, these
diagnostic pathway markers provide a strong bi-
ological interpretation for the association of an
expression profile with a particular type of dis-
ease. As a result, the pathway-based approach
can be inherently more reliable—which isn’t
to say, however, that knowing the pathway re-
lationships assures the success of a diagnostic
profile.

In addition to explaining gene expres-
sion differences between phenotypes, diagnos-
tic pathways can be used to predict the expres-
sion profiles of unknown disease states. Some
of these approaches represent pathway activity
with a function summarizing the expression val-
ues of member genes (Breslin et al. 2005, Guo
et al. 2005, Lee et al. 2008); other approaches
estimate pathway activation probabilities based
on the consistency of changes in gene expres-
sion (Efroni et al. 2007, Svensson et al. 2006).
Others have engineered normal cells to acti-
vate preselected oncogenic pathways to deter-
mine gene signatures that can distinguish tu-
mor characteristics (Bild et al. 2006, Glinsky
et al. 2005). For example, Bild et al. (2006)
overexpressed a panel of oncogenes, one at a
time, in primary cultures of human mammary
epithelial cells. The goal was to link each onco-
gene with a distinct set of dysregulated genes.
Given these links, they showed that the expres-
sion profile of a new tumor sample could be
analyzed to identify which oncogenes had been
activated.

Chuang et al. (2007) demonstrated an
approach that mines pathway biomarkers
directly from protein-protein interaction
networks. Gene expression profiles of breast
cancer patients were superimposed on a
human protein-protein interaction network to
identify protein subnetworks able to predict
cancers likely to metastasize within five years
(Figure 3a–c). The activity of a subnetwork was
inferred by averaging the normalized expres-
sion values of its member genes. The dysregu-
lation of a subnetwork was quantified in terms
of the mutual information between subnetwork
activity and patient phenotype (metastatic or

nonmetastatic). Chuang et al. (2007) also
showed that subnetwork markers overlap much
more extensively between patient cohorts
than individual marker genes and are more
informative regarding cancer susceptibility.

Rather than summarizing member gene ex-
pression into subnetwork activity, Taylor et al.
(2009) proposed to measure changes in in-
teraction coherence between member genes
in a subnetwork under different phenotypes
(Figure 3d). The interaction coherence in a
sample was defined using the difference in ex-
pression of the central hub gene in a subnetwork
with each of its interacting partners. Although
Taylor et al. (2009) and Chuang et al. (2007) dif-
fer in the way that they detect pathway dysregu-
lation, both capture a common set of contribu-
tions to breast cancer (for example, BRCA1 in
Figure 3b versus 3d ). Moreover, both studies
find that subnetwork markers are more accurate
in the classification of breast cancer metastasis
than previous predictors based on collections of
noninterconnected genes.

In summary, projection of gene expression
profiles onto pathway databases or interaction
networks is proving to be a powerful approach
for understanding disease. On one hand, diag-
nostic pathways are more reproducible than sin-
gle genes and can improve the prediction accu-
racy of disease states. On the other hand, the
studies to date are preliminary, and much work
is needed before the approach can be translated
into advanced diagnostics. One useful direction
will be to complement expression and path-
way connectivity with other large-scale data
sets that include information on genetic per-
turbations, epigenetic regulation, signal trans-
duction, metabolism, and other factors. Finally,
many real and functionally relevant interactions
are missing in current protein-protein interac-
tion data sets. Further insights can be expected
from reanalysis of the same diseases as the
data increase in coverage and quality. Nonethe-
less, it is clear that constructing functionally
coherent, pathway-aggregated biomarkers has
great inherent value versus choosing sets of
independently-selected genes.
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Figure 3
Predictive subnetwork markers for breast cancer metastasis. (a–c) Subnetworks identified by Chuang et al. (2007) involving the key
susceptibility regulators (a) TP53, (b) BRCA1, or (c) ERRB2. Nodes and links represent human proteins and protein interactions,
respectively. The color of each node scales with the change in expression of the corresponding gene for metastatic versus nonmetastatic
cancer. The shape of each node indicates whether its gene is significantly differentially expressed (diamond ) or not (circle). The
predominant cellular functions are listed next to each module: M, metabolism; CT, cell and tissue remodeling; A, apoptosis;
S, signaling of cell growth and survival; CR, cell proliferation and replication. Known breast cancer susceptibility genes are marked by
asterisks. (d ) BRCA1 and its interactors (e.g., BRCA2 and MRE11, as indicated) are highly ordered (green edges indicate correlated
expression between protein pairs) in surviving patients, whereas this organization is lost in patients with aggressive cancer. In contrast,
interactions involving SP1 are not significantly altered. PCC denotes the Pearson’s correlation coefficient between the expression
patterns of two interacting partners. Panels (a–c) are adapted with permission from Chuang et al. (2007). Panel (d ) is adapted with
permission from Taylor et al. (2009).
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GENETIC INTERACTION MAPS:
A TOOLBOX WITH
IMPLICATIONS FOR
CANCER AND DISEASE

Cell function is governed by a large and
complex network of combinatorial interactions
among genes, collectively referred to as genetic
interactions. Recently, several systems biology
studies in yeast, fly, worm, and mammalian cell
lines have made important strides in our ability
to map this genetic interaction network and its
impact on function. Classically, a genetic inter-
action is defined as the phenomenon whereby
combined mutations at several genes produce
a phenotype that is unexpected from any of the
single mutants (Avery & Wasserman 1992). Ge-
netic interactions are often quantified under the
assumption that combining two unrelated (in-
dependent) mutations should result in a multi-
plicative effect on phenotype, such that any de-
viation is considered an indication of a genetic
interaction (Bandyopadhyay et al. 2008, Collins
et al. 2006, Costanzo et al. 2010, Dixon et al.
2009, Mani et al. 2008b, St Onge et al. 2007). A
phenotypic score that is less than expected is a
negative or “aggravating” interaction, whereas
a score that is greater than expected is a positive
or “alleviating” interaction. An extremely neg-
ative genetic interaction that is often studied
is the “synthetic lethal” in which the combined
gene mutations result in cell death.

When viewed globally over a genome, the
network of genetic interactions becomes quite
large. To appreciate the magnitude of such
a network, consider that among the approxi-
mately 30,000 human genes there are on the
order of a billion (30,0002 = 900,000,000) po-
tential pair-wise genetic interactions. In a re-
cent near-comprehensive screen of genetic in-
teractions in the yeast Saccharomyces cerevisiae,
more than 3% of gene pairs showed signs
of genetic interaction in rich media condi-
tions (Costanzo et al. 2010). Moreover, ge-
netic interactions need not involve only pairs
of genes; rather, they can involve much larger
combinations.

Detection of Genetic Interactions in
Model Species and Humans

The development of rapid screening techniques
for genetic interactions, such as synthetic ge-
netic arrays (SGAs) (Tong et al. 2001, 2004),
diploid synthetic lethality analysis by microar-
ray (dSLAM) (Ooi et al. 2003), and epistatic
miniarray profiles (E-MAP) (Schuldiner et al.
2005), have allowed the quantification of ge-
netic interaction profiles for the majority of
genes in S. cerevisiae. Whereas studies of this
scope have yet to be implemented in higher
organisms, limited genetic interaction screens
in human cell lines and model organisms
such as Caenorhabditis elegans and Drosophila
melanogaster, as well as screens in Schizosac-
charomyces pombe, have already been conducted
(Bakal et al. 2008, Bommi-Reddy et al. 2008,
Dixon et al. 2008, Lehner et al. 2006, Roguev
et al. 2007; for a comprehensive review of epis-
tasis and genetic interaction data sources, see
Dixon et al. 2009).

Explicit construction of double gene knock-
outs in mammals remains a laborious process.
Viable alternatives, such as testing combina-
tions of RNA interference (RNAi) knockdowns
(Bommi-Reddy et al. 2008, Yang & Stockwell
2008, Zender et al. 2008), are emerging
but will naturally take time to mature into
genome-scale research tools. In the meantime,
a potential role for genetic interaction networks
in humans comes from the unlikely direction
of statistical genetics, and in particular the
technique of genome-wide association study
(GWAS). GWAS involves rapidly scanning
genetic markers along the genome [such as sin-
gle nucleotide polymorphisms (SNPs) or copy
number variations (CNVs)] to find genetic vari-
ations associated with a particular phenotype,
such as a heritable trait or disease (Hirschhorn
& Daly 2005). However, in many cases GWAS
has thus far failed to explain more than a
few percent of the genetic contribution to a
particular disease, especially for common dis-
eases such as type II diabetes, hypertension, or
bipolar disorder (Donnelly 2008, Maher 2008).
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Evidence is emerging, however, that some
of the missing heritability is attributable to
combinatorial genetic interactions within and
across pathways (Peng et al. 2009, Torkamani
et al. 2008, Wang et al. 2007). The need for
inclusion of combinatorial genetic interactions
also showcases the importance of developing
new approaches to systems-level analysis of
genetic interactions (Benfey & Mitchell-Olds
2008).

Characteristics of Genetic Networks

Studies in yeast have shown the relative robust-
ness of the cell to systematic deletions, as only
a small subset (∼20%) of genes are essential
in rich media conditions (Dixon et al. 2009).
Hillenmeyer et al. (2008), however, showed that
under a variety of stress conditions this list is in
fact expanded to include most protein-coding
genes (∼97%). As for the effect seen on sin-
gle deletions, St Onge et al. (2007) reported a
∼24-fold increase in the number of genetic in-
teractions observed after exposure to methyl-
methane sulfonate (MMS), a known DNA-
damaging agent. Comparisons of normal versus
stress conditions suggest that although the ge-
netic network contains some degree of redun-
dancy, it is a highly optimized response mecha-
nism (Costanzo et al. 2010). These experiments
illustrate that one should beware of confusing
redundancy with robustness.

Topological analysis of the yeast genetic
network showed a negative correlation between
a gene’s number of genetic interactions and
the fitness of its deletion mutant, i.e., hubs in
the genetic network tend to have a higher im-
pact on fitness (St Onge et al. 2007). Further-
more, hubs exhibit higher pleiotropy, as esti-
mated by the variety of functional annotations
of genetic interactions connected with the hub.
A gene’s number of genetic interactions was
also found to be correlated with its conservation
across yeast species, suggesting that genetic in-
teractions have substantial evolutionary effects
(Costanzo et al. 2010). Comparison of genetic
interaction networks across different yeasts or
between yeast and metazoans suggests that evo-

lutionary conservation is greater at the network
level, where the topological characteristics are
similar, than at the level of individual interac-
tions, which are not always shared (Dixon et al.
2009, Roguev et al. 2008).

Integration with Physical Interactions

Several studies (Bandyopadhyay et al. 2008, Pu
et al. 2008, Ulitsky et al. 2008b) have attempted
to integrate genetic interaction networks with
networks of physical interactions between pro-
teins. As an example, Bandyopadhyay et al.
(2008) scored the likelihoods of a protein pair
operating either within the same protein com-
plex or between functionally related complexes
on the basis of the strength of its genetic and
physical interactions. They first learned the ap-
propriate pattern of physical and genetic in-
teractions from known protein complexes cu-
rated in databases. Protein pairs with a strong
genetic but weak physical interaction typically
were found to operate between two functionally
related complexes. An agglomerative clustering
procedure was then used to merge the protein
pairs into increasingly larger complexes and to
identify pairs of complexes interconnected by
bundles of many strong genetic interactions.
Figure 4a shows three example complexes en-
riched for aggravating genetic interactions (i.e.,
synthetic lethality).

Hannum et al. (2009) used a similar in-
tegrative approach to analyze and reinforce
genetic interactions extracted from GWAS
(Figures 4b,c). They first identified pairs of
SNP markers whose combined state was asso-
ciated with the expression phenotypes of one
or more genes. A biclustering method was then
used to discover consecutive intervals of these
SNP pairs on two distinct chromosomes and
define a genetic interaction network. Similar to
Bandyopadhyay et al. (2008), genetic interac-
tions were shown to be strongly enriched within
and between known protein interaction com-
plexes. The key difference, however, was that
these genetic interactions had been inferred
from GWAS rather than generated using di-
rected mutations.

www.annualreviews.org • A Decade of Systems Biology 23.9

R

E V I E
W

S
 

I
N

 

A
D V A N

C
E

 

Changes may still occur before final publication online and in print.

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
10

.2
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
n 

D
ie

go
 o

n 
09

/0
8/

10
. F

or
 p

er
so

na
l u

se
 o

nl
y.



CB26CH23-Ideker ARI 26 June 2010 20:15

SW
R-C

 hist
one exchange

YAF9

SWC7

VPS72

ARP6

SWR1
SWC5 VPS71

SWC3

BRE1 LGE1

SHG1

SWD1 SPP1

BRE2

SWD2

SDC1

SWD3

COMPASS histone m
ethylation

RAD6-C histone ubiquitination

Physical
Alleviating genetic
Aggravating genetic

Interactions:

a

b c
XIII XV

Chromosome

9956 bp

116709 bp

167504 bp

385961 bp HOP1

RED1

TOP2

ZIP1

ZIP2

CDC73

RPB3

RPB7

RPB10

RPB2

RPB4

RPB8

RPB11

RPO26

RPB5

RPB9

RPC10

RPO21S
yn

a
p

to
n

e
m

a
l c

o
m

p
le

x

R
N

A
 p

o
lym

e
ra

se
 II

Genetic
Physical

Interaction type:

Figure 4
(a) Complexes associated with RAD6-C histone ubiquitination. Protein-protein interactions are enriched among the proteins within
each of the three complexes; in contrast, genetic interactions are enriched both within and between complexes. Adapted with
permission from Bandyopadhyay et al. (2008). COMPASS, complex of proteins associated with SET1; SWR-C, SWR1 complex;
RAD6-C, RAD6 complex. (b) Two interacting genomic loci ( green and blue) that represent significantly dense groups of marker-marker
interactions in a genome-wide association study. (c) Interacting complexes spanned by dense bundles of genetic interactions recovered
from the same study. Adapted with permission from Hannum et al. (2009).
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Emerging Genetic Interaction-Based
Approaches to Cancer Therapy

A prominent treatment for cancer is to kill pro-
liferating cancer cells through DNA damage.
Because DNA-damaging agents are also toxic
to normal tissue, there has been a great deal of
interest in developing DNA-damage sensitizers
that act specifically on cancer cells via synthetic
lethal interactions (Michod & Widmann 2007).
In effect, the goal of these studies is to iden-
tify and target proteins encoded by genes that
are synthetic lethal with cancer-causing mu-
tations. In pioneering work, two groups (Luo
et al. 2009, Scholl et al. 2009) have reported
promising results from screens focused on find-
ing synthetic lethal relationships with the KRAS
oncogene (Figure 5).

Many sensitizers have been or are currently
being investigated. Most notably, much atten-
tion has been given to a new class of sensitiz-

ers known as PARP inhibitors (Farmer et al.
2005). These drugs target an enzyme involved
in the base excision repair pathway, which is
synthetic lethal with the homologous recom-
bination pathway genes BRCA1 and BRCA2
that are commonly mutated in breast cancer.
In addition, farnesyltransferase inhibitors have
reached phase III clinical trials, an inhibitor to
the cell cycle checkpoint kinase Chk1 is in phase
II, and diverse other compounds, such as ataxia
telangiectasia mutated (ATM) kinase inhibitors,
are under preclinical development. Significant
opportunity remains to identify many other po-
tential molecular targets for tumor sensitiza-
tion, and to date, DNA damage response path-
ways appear to be a hotbed of such targets.
Thus, in addition to the long-term goals of
comprehensively mapping the genetic interac-
tion network in different cells under various
conditions, the systematic discovery of genetic
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Figure 5
A model of mitotic regulation by Ras. (a) BI-2536, a PLK1 inhibitor, attenuates tumor growth in colorectal
cancer cells in vivo. Representative images of tumors after treatment are shown. (b) A model in which
oncogenic Ras introduces mitotic stress that can be exacerbated to produce lethality by interfering with
kinetochore and APC/C (anaphase-promoting complex) function. Genes shaded green are RSL (Regulators
of Sex-Limitation) genes, whereas yellow genes cause Ras-specific lethality when overproduced. Red dashed
lines illustrate genetic connections between Ras and aspects of mitotic regulation that lead to mitotic stress.
Adapted with permission from Luo et al. (2009).
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interactions has the potential to profoundly
change the treatment of cancer (Mendes-
Pereira et al. 2009, Morgan et al. 2010).

SYSTEMS APPROACHES TO
IDENTIFY DISEASE GENES

The search for disease-causing genes is a long-
standing goal of human genetics. Despite sev-
eral success stories [e.g., identification of the
genetic basis of cystic fibrosis (Rommens et al.
1989), Tay-Sachs (Harding 1983), and Hunt-
ington’s disease (Myers 2004)], many diseases
with quantifiably substantial genetic compo-
nents continue to elude detailed genetic expla-
nations (Culverhouse et al. 2002, Moore 2003).
For this reason, systems approaches are play-
ing an increasing role in this area through the
computational integration of multiple types of
genome-wide measurements (Adler et al. 2006,
Ergün et al. 2007, Franke et al. 2006, Lage et al.
2007, Mani et al. 2008b, Mullighan et al. 2007,
Oti et al. 2006, Tomlins et al. 2005, Yao et al.
2006). Several groups have promoted the idea
that similar diseases are caused by mutations in
different genes that are part of the same func-
tional module (Goh et al. 2007, Oti & Brunner
2007). The approaches differ in the underlying
data sets used, but most of them involve super-
imposing a set of candidate genes alongside a set
of known disease genes on a physical or func-
tional network (Franke et al. 2006, Lage et al.
2007, Oti et al. 2006).

Other methods do not depend on prior
knowledge of disease genes but instead in-
fer molecular interaction networks to locate
susceptibility genes. For example, Amit et al.
(2009) used an RNAi perturbation strategy in
mouse dendritic cells to reconstruct the tran-
scriptional network downstream of the Toll-
like receptors (TLRS), an important protein
family in initiation of pathogen-specific im-
mune responses (Figure 6). Candidate regu-
lators were chosen on the basis of a time course
of mRNA expression measured after stimula-
tion with pathogen-derived components. The
regulators serve as a gene signature of the im-
mune response in the presence of pathogens. In

particular, they identified 144 candidate regu-
lators whose expression changed in response to
at least one stimulus. Next, each of the candi-
date regulators was perturbed (knocked down)
by a library of validated lentiviral short hairpin
RNAs. Gene expression profiles were gathered
under each perturbation and used to infer the
regulatory network. The final network included
24 core regulators, affecting the expression pat-
terns of multiple targets, four of which were
validated experimentally. They further identi-
fied 76 fine-tuners with fewer targets. Together
these networks shed light on the regulatory dy-
namics of the immune response in mammals.

Another approach for de novo identifica-
tion of disease genes was developed by Wang
et al. (2009), who dissected gene expression pro-
files to infer posttranslational modulators of the
MYC transcription factor. Modulators affect a
transcription factor at the level of phosphory-
lation, acetylation, and ubiquitination and are
difficult to detect systematically using large-
scale methods (Linding et al. 2007). However,
key modulators were efficiently identified by
computing an information-theoretic measure
of correlation between the expression profile of
MYC and its direct transcriptional targets, given
the expression of a “third party” candidate mod-
ulator. Candidate modulators were selected for
which the expression level was found to signifi-
cantly influence the correlation between MYC
and its targets. Using a similar information-
theoretic measure, Mani et al. (2008a) con-
structed a network of B cell transcriptional in-
teractions and interrogated it for cancer genes.
A similar information-theoretic measure was
used to find pairs of interactions in the network
that gain or lose correlation when comparing a
B cell lymphoma tumor with a reference B cell.
They demonstrated that pathways enriched for
such high and low correlations may be impli-
cated in pro-oncogenic processes. As a specific
example, their method recovered BCL2 and
SMAD1 in follicular B cell lymphoma. Both of
these are oncogenes known to cause cancer but
that are not detected through a standard anal-
ysis of differential gene expression. Although
this approach used expression measurements
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Figure 6
A systematic strategy for network reconstruction. (a) Cell state is measured using array-based mRNA
expression profiles. (b) From these data, a set of putative regulators is selected. TF, transcription factor;
CFs, chromatin modifier factor; RNA bp, RNA-binding protein. (c) The network is perturbed with lentiviral
short hairpin RNA (shRNA) against each regulator, followed by measurement of signature genes. (d ) These
shRNA profiling measurements are used to inform network reconstruction. Adapted with permission from
Amit et al. (2009).
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and is thus unable to capture the effects of
posttranslational regulation, the framework can
be easily extended to include measurements of
protein level as such high throughput data be-
comes more commonly available.

Ergün et al. (2007) discovered key medi-
ators in metastatic and nonrecurrent prostate
cancers through the use of a regulatory interac-
tion network constructed from a reference set
of 1,144 microarray expression profiles span-
ning seven different cancer types. The known
prostate cancer metastasis genes, androgenic
receptor (AR) and other genes from the AR
pathway, were recovered among the top mod-
ulators in metastatic samples but not in non-
metastatic ones.

STEM CELL SYSTEMS BIOLOGY
AND COMPUTATION
OF CELL FATE

Cell fate decisions involve coordinated dynamic
expression and regulatory control of hundreds
of genes in response to both internal and ex-
ternal stimuli. To dissect the complex inter-
play among these regulatory pathways, recent
studies in stem cell biology have begun to
combine classical experimental techniques with
emerging high-throughput experimental tech-
niques such as screens for RNAi, genome-wide
mRNA expression profiling, large-scale chro-
matin immunoprecipitation (ChIP), and mass
spectrometry–based proteomics (Chen et al.
2008, Kidder et al. 2008, Spooncer et al. 2008).
How these vast amounts of data can be used
to build a quantitative and predictive model of
cell fate control is one of the key challenges in
systems biology and stem cell research.

Numerous efforts have been devoted to
characterizing the molecular components
involved in self-renewal of embryonic stem
(ES) cells and differentiation of stem cells along
specific lineages. Owing to dramatic advances
in genome-wide ChIP technology, the target
genes of 20 key ES cell transcription factors,
including NANOG (Boyer et al. 2005, Loh
et al. 2006, Mathur et al. 2008), OCT4 (Boyer
et al. 2005, Loh et al. 2006, Mathur et al.

2008), SOX2 (Boyer et al. 2005), and other
factors (Boyer et al. 2005, 2006; Cole et al.
2008; Jiang et al. 2008; Johnson et al. 2008;
Kidder et al. 2008; Kim et al. 2008; Liu et al.
2008; Loh et al. 2006; Mathur et al. 2008), have
now been identified. An ES cell transcriptional
circuit has been assembled through integration
of these separate ChIP studies, which cover
approximately 50,250 putative protein-DNA
interactions that have been identified specif-
ically in ES cells (MacArthur et al. 2009).
Moreover, several studies have reported that
epigenetic regulation of the key transcrip-
tion factors by way of chromatin structure
(Bernstein et al. 2006, Guenther et al. 2007,
Mikkelsen et al. 2007) or DNA methylation
(Fouse et al. 2008, Lagarkova et al. 2006, Shen
et al. 2006, Yeo et al. 2007) also contributes to
the maintenance of pluripotence (reviewed by
Bibikova et al. 2008). In addition to epigenetic
marks, microRNAs (miRNAs) (Marson et al.
2008) and signaling pathways (Chen et al.
2008) have also been connected to the dynamic
balance of ES transcriptional control.

Wang et al. (2006) reported a different take
on stem cell systems biology; they assembled
a high-quality protein-protein interaction net-
work centered on the NANOG transcription
factor in mouse ES cells. They used iterative
immunoprecipitation experiments to pull down
proteins that physically associate with NANOG,
after which mass spectrometry was used to iden-
tify the components of the NANOG interac-
tome. Interestingly, the NANOG interactome
is highly enriched in the transcription factors
of the core ES cell transcriptional circuit, and
many of these factors also regulate the expres-
sion of other members of the NANOG protein-
protein interaction network. This indicates that
stem cell fate control is highly dynamic and in-
volves combinatorial interactions between key
transcription factors and the genes that encode
them. Figure 7 shows the current model of this
intrinsically complex but coordinated protein-
protein and protein-DNA interaction network.

Müller et al. (2008) reconstructed an
extended stem cell regulatory network using a
computational approach to integrate publicly
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Figure 7
Core embryonic regulatory networks for cell fate decisions. (a) High-confidence protein-protein interactions
between the transcription factor NANOG and NANOG-associated proteins. An iterative proteomics
approach was adapted to identify proteins that physically associate with NANOG and NANOG-associated
proteins by using affinity purification in conjunction with mass spectrometry (Wang et al. 2006).
(b) Transcription factor binding (protein-DNA) interactions from the data generated by various recent high-
throughput chromatin immunoprecipitation (ChIP) experiments. Reproduced with permission from
MacArthur et al. (2009).

available gene expression profiles and
protein interaction networks. They first
clustered pluripotent, multipotent, and dif-
ferentiated human cells on the basis of gene
expression and identified a set of genes that
are specifically upregulated in undifferenti-
ated pluripotent cells (pluripotency-related
genes). Next, using a previously compiled
network of human protein-protein and
protein-DNA interactions including those in
the NANOG interactome (Wang et al. 2006),
a collection of subnetworks induced by these
pluripotency-related genes were identified
using a graph-theoretic algorithm (Ulitsky &
Shamir 2007). This collection of subnetworks,
which the authors name PluriNet, contains
mostly novel interactions; few have been
well-characterized in stem cells. Nonetheless,
the collection seems to represent common
cellular machineries shared by pluripotent cells
(including ES cells, embryonal carcinomas,
and induced pluripotent cells).

Another recent study has revealed a large
map of transcription factor combinations that
may point the way to understanding, and per-
haps altering, cell fate decisions. Using the
mammalian two-hybrid (M2H) system, Ravasi
et al. (2010) generated a database of all pairwise
protein-protein interactions among the major-
ity (∼1,200) of human transcription factors.
From these data, they extracted an interaction
network of 15 homeobox transcription factors
for which the expression levels were strongly
associated with tissue type. The homeobox net-
work was also shown to be capable of stratifying
the stem cell expression profiles that had been
collected by Muller et al. (2008) into the germ
layer from which each was derived (endoderm,
mesoderm, ectoderm). It has long been appreci-
ated that combinatorial transcription factor in-
teractions play an important role in cell com-
mitment to different tissue lineages; the work
by Ravasi et al. (2010) maps out precisely what
some of these combinations are.
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All of the studies described above support
the idea that pluripotency and self-renewal are
under tight control by a dynamic and highly
complex regulatory network involving protein–
protein interactions, transcription factors, sig-
naling pathways, miRNAs, and other epigenetic
modifiers. Meanwhile, follow-up experiments
are needed to test these inferred regulatory in-
teractions and their effects on stem cell fate.
Integration of large-scale RNAi perturbations
with genome-wide ChIP experiments and sub-
sequent gene expression profiling (Ding et al.
2009, Hu et al. 2009) has been shown to be
useful in confirming a set of transcriptional in-
teractions and their effects on ES cell fate regu-
lation. A next step is to understand how differ-
ent internal and external stimuli can affect the
dynamics of the regulatory network in ES cells.
The thorough understanding of such dynamics
will enable human-made control of cell fate de-
cisions and, ultimately, tissue engineering and
regenerative medicine.

SYSTEMS BIOLOGY SOFTWARE

Considerable time and resources have been ex-
pended on developing computational tools for
answering systems-level research questions. To
effectively analyze systems data, a software tool
must meet several requirements. First, it must
handle genome-scale data sets. Second, the tool
must not be restricted to a single data type
but be able to integrate multiple measurements
of a system. Third, the software should assist
with mapping and modeling of networks and
pathways from component data sets. Fourth, it
should provide an intuitive interface and visual
display of both the data and models.

A number of software packages have been
developed to address these requirements.
Typically, these packages view the landscape of
biological data as belonging to either of two cat-
egories: (a) data pertaining to molecular com-
ponents and their states, and (b) data pertaining
to molecular interactions. In what follows, we
give a sampling of some of these robust integra-
tive software tools available for systems biology
research. Some bioinformatics software is

intended for those with an in-depth knowledge
of computer science; we focus instead on
software tools that are geared toward cell
biologists.

Cytoscape is a free bioinformatics environ-
ment for integration, visualization, and query
of biological networks (Figure 8). Cytoscape’s
core software component provides function-
ality for data import and export, integration
of molecular states with molecular interac-
tions, network and integrated data visualization,
and data filtering and query tools. Cytoscape’s
VizMapper enables attribute-to-visual map-
pings, which control visual aspects of nodes and
edges (e.g., shape, color, size) based on their
molecular states (called node attributes). Such
mappings allow overlay of multiple data types
in a network context.

Cytoscape is developed in Java and dis-
seminated under an open source license (the
GNU Lesser General Public License, a per-
missive software license published by the Free
Software Foundation). It has been integrated
with many other software tools, including
stand-alone applications (e.g., geWorkbench,
http://wiki.c2b2.columbia.edu/workbench/
index.php), Web sites such as a network
image generator (e.g., Harvard Gene Func-
tional Annotation Prediction Browser, http://
func.med.harvard.edu/site/yeast/), and ma-
jor network and pathway databases, in-
cluding the Biomolecular Interaction Net-
work Database (BIND, http://www.bind.ca/),
Reactome (http://www.reactome.org/), the
Database of Interacting Proteins (http://dip.
doe-mbi.ucla.edu/), the Michigan Molecular
Interactions database (MiMI http://mimi.
ncibi.org), and Pathway Commons (http://
pathwaycommons.org). Commercial soft-
ware companies have also used Cytoscape,
including Oracle, Agilent GeneSpring and
GeneGO (see below).

The Cytoscape core is extended through a
straightforward plugin architecture, which al-
lows rapid prototyping and development of
advanced computational analyses and features.
The active involvement in Cytoscape plugin de-
velopment by many third-party programmers
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Figure 8
Graphical user interface of Cytoscape. Each window showcases a different analysis or visualization of protein interaction networks and
integrated data.

attests to the success of Cytoscape as an open
source bioinformatics computing environment.
Since 2004 (Cytoscape v2.0–v2.6), more than
74 publicly available plugins have been devel-
oped, 46 of which have maintained full compat-
ibility with the latest Cytoscape releases (v2.5
or v2.6) (Cline et al. 2007, Shannon et al.
2003).

NAViGaTOR, another open source net-
work visualization package, is an alternative to
Cytoscape. Its use of hardware-based graph-
ics accelerators using Open Graphics Library
(openGL) allows fast rendering and visualiza-
tion of extremely large networks. Interesting
options include the ability to visualize graphs
using both 2D and 3D views and the ability
to collapse nodes into a single “meta node.”
NAViGaTOR supports an application pro-
gramming interface (API) for future plug-ins as

well as a variety of data formats. It boasts a lasso
selection option and a bookmarking feature to
facilitate manual layout and other operations on
a network (Brown et al. 2009).

VisANT is a lightweight network visualiza-
tion tool able to run from as a browser-based
applet or as a standalone Java program. Of par-
ticular interest is its name resolution feature,
which attempts to map all nodes in the network
to distinct gene names such that two proteins
coded by a single gene are always mapped as
one entity. This name-mapping feature is one
of the most easy to use and streamlined of any
software package we review here; it is well de-
signed for the common case with scalability in
mind. For large data sets, VisANT has been
tested at representing more than 200,000 nodes
on a machine with 1 Gb of random-access mem-
ory (RAM). Another interesting feature is the
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Figure 9
Screenshot of CellDesigner when drawing a network as process diagrams.

representation of metagraphs, whereby a sin-
gle node can contain a subgraph. VisANT is
also integrated with an online database featur-
ing more than 450,000 interactions in dozens
of organisms (Hu et al. 2008).

CellDesigner is a structured diagram editor
for drawing gene regulatory and biochemi-
cal networks (Figure 9). Users can browse
or modify networks as process diagrams
(Kitano et al. 2005) and store the networks in
systems biology markup language (Hucka et al.
2003), a standard for representing models of
biochemical and gene regulatory networks. A
unique feature of CellDesigner is that networks
are able to link with simulations. Users can
view the dynamics of a network under the

input parameters through an intuitive graph-
ical interface. CellDesigner is implemented
in Java and thus supports various operating
systems. The recent releases integrate several
simulation/analysis software packages
(Funahashi et al. 2008).

Another open-source option is Pathway
Assist. The focus of this tool is an automated
natural language processing-based informa-
tion extraction system for protein-protein and
gene-gene functional interactions. PathwayAs-
sist also provides a native curated database of
protein interactions and cellular pathways. Its
text-mining tool can extract biological interac-
tions by reading digital text documents (e.g.,
biomedical journal articles and abstracts). It
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Figure 10
Screenshot of CellDesigner when stimulating a network model given different input parameters.

efficiently scans sentences, searching for co-
occurrences of biological terms and connecting
verbs (e.g., the keywords “binds,” “inhibits,”
“modulates” or “phosphorylates”) between the
co-occurring terms. The bundled database con-
tains at present approximately 500,000 biolog-
ical interactions among more than 50,000 pro-
teins from several organisms extracted from the
current literature (Nikitin et al. 2003). It is
available for download upon request.

Finally, two commercial packages are also
available—GeneGO (Nikolsky et al. 2005) and
Ingenuity (Ingenuity)—both of which offer a
comprehensive product aimed at industry and
academia.

SUMMARY AND CONCLUSIONS

In this review, we have visited four nascent
and emerging areas in the field of systems

biology. An overarching principle, and one we
have tried to highlight throughout, is that sys-
tematic measurement techniques coupled with
the use of network models lead to the discov-
ery of novel biology. Although one can imple-
ment this paradigm in several ways, we have
attempted to point out some of the exemplars
that have led to big wins in the study of devel-
opment and disease.

One of the main challenges systems biology
will face over the next decade is in breaking the
divide between classical and high-throughput
methods. Its role is not to replace any of the
classical techniques from biochemistry or ge-
netics but to provide a set of organizing princi-
ples that integrate these methods (Figure 2).
The way forward is undoubtedly through
close integration of multiple disciplines to
crack the biological system using every means
possible.
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