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Introduction 
 
Every living cell is governed by a vast network of interacting proteins, RNA, DNA, 

metabolites, and other molecules.  Interactions among proteins are especially crucial to a 

wide variety of cellular processes: assembly of the structural compartments of a cell such 

as the cytoskeleton and nuclear pore; signal transduction pathways such as the classical 

mitogen-activated protein kinase (MAPK) cascade involved in pheromone signaling; 

enzyme-protein substrate interactions; and assembly of large molecular machines such as 

DNA polymerase and the proteasome. 

Knowledge of the stable and transient protein interactions in a cell facilitates 

functional annotation of novel genes and provides insight into its higher-order 

organization.  Considered individually, protein interactions stimulate the formulation of 

hypotheses that can be tested experimentally.  For example, a membrane protein found to 

interact with a transcription factor might seem at first to be a “false positive”, but such 

findings have also led to unexpected new insights into signal transduction, as in the case 

of Notch and Suppressor of hairless (Artavanis-Tsakonas et al. 1999) or the SREBPS 

transcription factors that localize to the ER membrane (Edwards et al. 2000).  Further, 

when combined with diverse large-scale data such as microarray gene expression profiles 

(DeRisi et al. 1997) or genomic phenotypes (Begley et al. 2002, 2004; Deutschbauer et 

al. 2002), protein interaction networks provide a more complete picture of cellular 

pathways and responses than has ever before been available.  Such an integrated network 

is useful because it provides a lucid means of summarizing existing biological knowledge 

about molecular behavior. 



 Recent years have witnessed an explosive growth of research on protein 

interactions and networks, with new experimental techniques, data sets, analyses, and 

modeling methods being published at an ever increasing rate.  In particular, the last two 

years have seen the arrival of large-scale protein interaction data sets from the multi-

cellular organisms fruit fly (Giot et al. 2003) and round worm (Li et al. 2004).  Biologists 

are now faced with the challenge of deciphering these complex metazoan networks with 

the ultimate goal of describing the network of protein interactions in humans. 

In this chapter, we summarize current technologies for generating large-scale 

protein interaction data, as well as visualizing and modeling protein interaction networks 

together with complementary large-scale data of various types.  We cover recent work to 

extend and compare these models across different species or biological conditions, and 

we describe efforts to understand the evolution and dynamics of protein interaction 

networks.  

 

Methodologies to obtain protein interaction data 
 
Traditionally, protein interactions have been studied individually by genetic, biochemical, 

and biophysical techniques.  However, the speed with which protein sequences are now 

discovered (or predicted) has created a need for high-throughput methods for interaction 

detection also.  Consequently, a variety of experimental and computational approaches 

have been introduced in the past several years that can tackle the problem at large scale, 

resulting in a vast amount of interaction data in the public domain.  As described in the 

following text, yeast two-hybrid and mass spectrometry (MS) technologies aim to detect 

physical binding between proteins, whereas genetic interactions and computational 



methods seek to predict protein functional associations.  Such functional associations 

may or may not result from physical binding.   

 
Experimental technologies to identify protein-protein interactions 
 
A variety of methods are now available for measuring protein-protein interactions, such 

as co-immunoprecipitation (Lane and Crawford, 1979), the two-hybrid system (Fields 

and Song 1989), and the glutathione-s-transferase (GST) pull-down assay (Kaelin et al. 

1991)- the former two being the most widespread.  Many of the protein-protein 

interactions that occur in vivo are maintained when a cell is lysed under non-denaturing 

conditions.  Co-immunoprecipitation takes advantage of this fact to detect and identify 

physiologically relevant protein-protein interactions.  The principle is straightforward: if 

protein X is immunoprecipitated with an antibody to X, then protein Y, which is stably 

associated with X in vivo, may also precipitate in vitro. To identify novel associated 

proteins after immunoprecipitation, mass spectrometry has become the method of choice 

because of its sensitivity, speed, and ability to identify post-translational modifications 

(Aebersold and Mann, 2003). 

Tandem mass spectrometry (MS/MS) is typically used to identify proteins from 

complex mixtures (Figure 1b).  The protein mixture is digested to form peptides which 

are introduced into the first mass spectrometer to separate them according to mass  

(detected as a mass-to-charge ratio).  Peptides of a fixed size are selected and directed 

towards a so-called “collision cell” in which the peptides collide with molecules of an 

inert gas (such as argon) and break apart into fragments.  The resulting fragments are 

analyzed by a second mass spectrometer which measures the mass of each fragment to 

produce a peptide “fragmentation profile”.  The peptides then serve as surrogate markers 



for the protein sequence.  Proteins are identified by searching the resulting peptide mass 

fingerprint through sequence databases.  To identify novel protein interactions, co-

immunoprecipitation can be used initially to collect a mixture of interacting proteins 

followed by protein identification by MS/MS. 

In the two-hybrid system (Figure 1a), a protein “bait” of interest (B) is fused to 

the DNA binding domain (DB) of a transcription factor such as Gal4p.  A second “prey” 

protein (P) is fused to the transcriptional activation domain (AD) of the same 

transcription factor.  A physical interaction between B and P reconstitutes a functional 

transcription factor that can activate expression of a reporter gene.  Usually, multiple 

reporter genes that allow growth selection on different media are used to increase the 

specificity of detection.  Because the two-hybrid system is carried out in vivo and only 

requires the manipulation of DNA, it is amenable to automation and high-throughput 

methods.  

Currently, MS/MS is the most practicable way to identify the components of a 

protein complex but typically does not provide information about interaction topology.  

In this regard, the two-hybrid system can provide complementary information about 

direct interactions, revealing which specific proteins bind to which others within a protein 

complex or signaling pathway.  Both yeast two-hybrid technology (Uetz et al. 2000, Ito et 

al. 2001) and co-immunoprecipitation followed by MS (Gavin et al. 2002, Ho et al. 2002) 

were initially applied in the yeast Saccharomyces cerevisiae (Baker’s yeast, a model 

eukaryotic cell) to generate large-scale protein interaction data.  More recently, yeast 

two-hybrid technology has also been used to generate large-scale protein interaction data 



in the multicellular organisms Drosophila melanogaster (fruit fly) (Giot et al. 2003) and 

Caenorhabditis elegans (round worm) (Li et al. 2004).   

 Protein interactions do not always represent physical binding events.  For 

example, genetic interaction, in which two gene mutations have a combined effect not 

exhibited by either mutation alone, constitutes yet another interaction type that is being 

measured at high throughput.  Two major types of genetic interactions are synthetic lethal 

interactions, in which mutations in two nonessential genes are lethal when combined; and 

suppressor interactions, in which one mutation is lethal but combination with a second 

restores cell viability.  Screens for genetic interactions have been used extensively to shed 

light on pathway organization in model organisms (Avery and Wasserman 1992; 

Guarente 1993; Hartman et al. 2001; Thomas 1993), while in humans, genetic 

interactions are critical in linkage analysis of complex diseases (Sham 2001) and in high-

throughput drug screening (Dolma et al. 2003).  For species such as yeast, recent 

experiments have defined large genetic networks cataloguing thousands of such 

interactions (Hartman et al. 2001; Huang and Sternberg 1995; Tong et al. 2001; Tong et 

al. 2004).   

 
 
Computational approaches to predict protein-protein interactions 
 
In the late 1990s, several related methods were proposed for predicting protein 

interactions from DNA sequence information which received much attention due to the 

increasing number of complete genomes becoming available.  These methods relied on 

the exploitation of “genomic context” in the form of structural or evolutionary 

constraints.  One form of genomic context is the co-occurrence of orthologous genes 



across entire genomes which defines a phylogenetic profile (Ouzounis and Kyrpides 

1996, Pellegrini et al. 1999).  Such a profile associates each gene with a binary 

representation of the presence/absence of its orthologs in different genomes.  Genes that 

“travel” together during evolution are assumed to be involved in similar cellular 

processes.  It is then possible to predict the functional association of genes that possess 

similar profiles.  This method becomes more powerful with an increasing number of 

genomes because this allows more accurate profiles to be constructed.  However, 

evolutionary processes such as gene duplication, loss, and horizontal gene transfer could 

hamper accurate construction of phylogenetic profiles (Galperin and Koonin 2000).  

Another genomic context based approach (Enright et al. 1999, Marcotte et al. 1999) 

exploits the notion of gene fusion, in which several genes in one species are merged or 

concatenated in other species into a single gene which encodes a multifunctional, 

multidomain protein.  This event is maintained by selection, possibly due to the selective 

advantage of decreased regulational load (Enright et al. 1999).  Proteins that are fused in 

one genome are likely to interact, physically or at least functionally, in other genomes.   

An approach analogous to the gene fusion method includes analysis of gene 

neighborhoods in genomes (Dandekar et al. 1998, Overbeek et al. 1999).  The basic 

assumption is that genes which interact or are functionally associated tend to be located 

in physical proximity to each other on the genome.  The most apparent case of this 

phenomenon occurs in prokaryotes in which related genes are often co-localized into so-

called “operons”.  Although operons do not generally occur in eukaryotic systems, it is 

still possible to infer functional association of a pair of genes if their homologs tend to be 

close in many genomes.   



 A new trend in de novo protein interaction prediction is to search for coordinated 

mutations between the sequences of interacting proteins, e.g., as has been observed for 

ligand-receptor interactions (Goh et al. 2000, 2002).  The assumption is that the 

interacting proteins must co-evolve to preserve the interaction over time and thus the 

functional activity mediated by the interaction.  Pazos and Valencia (2001) have used 

such a method to perform large-scale predictions of interactions with high statistical 

significance, resulting in 2,742 putative protein interactions for E. coli.  Ramani and 

Marcotte (2003) introduced further methods to align phylogenetic trees of interacting 

protein families to define specific interaction partners.  They suggest a model for the 

evolution of interacting protein families in which interaction partners are duplicated in 

coupled processes. 

Other computational methods have been developed for predicting novel protein 

interactions through analysis of examples of known interactions.  The common theme 

here is to transfer the existing annotation of a known gene to a newly sequenced gene 

product.  This is based on the concept that sequence and structural similarities between 

gene products suggest functional similarities.  One type of annotation transfer is based on 

structural data of known interacting proteins.  New interactions can be inferred between 

pairs of proteins for which the sequences are compatible with known crystal structures of 

heterodimers (Russell et al. 2004, Aloy et al. 2004) and between pairs of proteins with 

domains that are often observed in interacting proteins (Ng et al. 2003).  Another type of 

annotation transfer is the “interolog” approach where a pair of proteins in one species is 

predicted to interact if their best sequence matches in another species were reported to 

interact (Matthews et al. 2001, Yu et al. 2004). 



Large protein-protein interaction data sets are now available for a variety of 

species (Table 1) including S. cerevisiae (Gavin et al. 2002; Ho et al. 2002; Ito et al. 

2001; Lee et al. 2002; Uetz et al. 2000), H. pylori (Rain et al. 2001), E. coli (Butland et al 

2005), D. melanogaster (Giot et al. 2003), C. elegans (Li et al. 2004; Walhout et al. 

2000), and H. sapiens (Peri et al. 2003).  In light of these vast scientific resources made 

available through experimental and computational analyses, several databases storing 

interaction data are now in wide usage (Table 2).  Most of these databases contain 

interaction data derived from both high-throughput analyses and small-scale experiments.  

Besides being data warehouses, some of these databases have developed new methods for 

data exchange and visualization to facilitate the study of molecular interaction networks.  

 

Computational modeling of protein networks  
 
 
Visualization of protein interaction networks  

 

Numerous articles and textbooks include figures showing different types of 

molecules and interactions between them.  However, these figures typically invoke a 

limited number of components to describe an isolated biochemical process or signaling 

pathway, are carefully tailored to illustrate a predetermined concept, and rely heavily on 

accompanying textual descriptions (Pirson et al. 2000).  In contrast, there is a pressing 

need for visual representations that can systematically present and organize the extremely 

large amounts of protein-interaction and expression data rapidly accumulating in the 

wake of two-hybrid screens, DNA microarray technology, and high-throughput 

proteomics.  Such displays are not hand-tailored to illustrate a foregone conclusion, but 



should ideally stimulate the discovery of new protein functions and biological 

relationships.  As the raw data become increasingly complex with each type of 

supplemental information, tools that are both visual and interactive become increasingly 

important for emphasizing and extracting the key features. 

Although protein-protein interactions were originally reported as lists of protein pairs 

(e.g. Uetz et al. 2000), more and more often they are represented graphically as two-

dimensional networks.  Figure 2 illustrates the difference on a small set of protein-protein 

interactions in yeast: while both representations reflect identical information, the network 

representation (called layout) has fundamental advantages with respect to human 

perception.  Hand-formatted maps (such as those in Michal 1998; Kohn 1999) are usually 

of high quality, but available for very limited datasets due to the large amount of work 

involved to construct them.  Accordingly, the large numbers of protein interactions in 

public databases (Table 2) have stimulated a range of automated layout algorithms to 

visualize them. 

Several software tools are available for visualizing physical or genetic interaction 

networks.  Examples of network visualization tools include: Cytoscape (Shannon et al. 

2003), Osprey (Breitkreutz et al. 2003), Pajek (Batagelj and Mrvar 1998), ProViz, and  

WebInterViewer.  These are software packages that have either been designed to 

visualize protein interactions or can be customized for that task (Table 3 gives a side-by-

side comparison). 

Such software enables a variety of routine operations on the network: automated 

network layout; association of data attributes (such as gene expression profile and gene 

ontology) with different network components; mapping of data attributes to visual 



properties (such as node and edge color, shape and size), and network filtering.  Specific 

features of each available program are listed in Table 3. 

 
 
Topological properties of protein interaction networks 
 
Along with other types of cellular networks, such as metabolic, regulatory and genetic 

networks, the topological properties of protein interaction networks have been intensely 

studied since the first large-scale data sets were published.  In the past few years, the 

rapidly developing theory of complex networks has led to the discovery that the 

architectural features of molecular interaction networks within a cell are shared to a large 

extent by other complex systems, such as the Internet, US power grid and even social 

networks (Barabasi and Oltvai 2004).  This unexpected universality indicates that similar 

laws may govern most complex networks in nature, which allows the expertise from large 

scale, non-biological systems to be used to characterize the organizing principles of 

cellular networks.   

Several recent studies have indicated that protein interaction networks in diverse 

species also have the features of a so-called scale-free network which means the 

connectivity distribution of the network follows a power-law function (see Chapter X for 

a detailed discussion) (Jeong et al. 2001, Wagner 2001, Rain et al. 2001, Giot et al. 2003, 

Li et al. 2004, Butland et al. 2005).  This topological feature is illustrated in Figure 3, 

which shows the protein interaction map of S. cerevisiae generated by a systematic two-

hybrid screen.  Whereas most proteins in the network participate in only a few 

interactions, a few proteins participate in many interactions (hubs) – a typical feature of 

scale-free networks.  Protein interaction networks also exhibit another common 



architectural feature of all complex networks: the so called “small world effect”- any two 

nodes can be connected with a path of a few links only.  Within the cell, this effect was 

first observed with metabolic networks, in which paths of only three to four reactions can 

link most pairs of metabolites (Jeong et al. 2000, Wagner and Fell 2001).  Although both 

“scale-free topology” and “small world connectivity” have clear mathematical 

definitions, the biological consequences of these topological properties remain to be 

studied.  The presence of hubs seems to be a general feature of all cellular networks and 

they fundamentally determine the network’s global behavior (in terms of both scale-free 

and small world connectivity).  The biological importance of hubs is supported by the 

over-representation of genetic interactions between hubs in protein interaction networks 

(Ozier et al. 2003) and by the over-representation of hub genes among all lethal genes 

revealed by genome-wide deletion study (Jeong et al. 2001).   

  
In addition to the aforementioned global topological features, protein interaction 

networks also possess recurring local topological features known as “network motifs”.  

Network motifs are defined as particular patterns of interaction (i.e., isomorphic 

subgraphs) that are over-represented compared to randomized versions of the same 

network.  Significant motifs were first shown to exist in transcriptional regulatory 

networks (Shen-Orr et al. 2002) and subsequently in a variety of biological networks 

(Milo et al. 2002, Wuchty et al. 2003, Yeger-Lotem et al. 2004).  The high degree of 

evolutionary conservation of motif constituents within the yeast protein interaction 

network (Wuchty et al. 2003) further indicate that motifs are indeed of direct biological 

relevance.  Many network motifs, for instance, feed-forward loop and single input motif 

(Figure 4), are also well known in circuit design and other engineering fields and thus can 



be studied in detail using similar approaches from these fields.  Indeed, as a first step in 

this direction, the highly significant feed-forward loop has been shown to function as a 

sign-sensitive delay element in transcriptional regulatory networks, a circuit that responds 

rapidly to step-like stimuli in one direction and as a delay to steps in the opposite 

direction (Mangan et al. 2003).  

 

Integrating protein interaction networks with complementary data 
 
Just as BLAST has been proven instrumental for querying sequence databases to identify 

genes, new pathway discovery and search tools enable us to query a protein interaction 

network to identify particular interaction pathways in a systematic fashion.  For example, 

several groups (Ge et al. 2001; Hanisch et al. 2002; Ideker et al. 2002; Jansen et al. 2002) 

have applied “co-clustering” approaches to identify groups of proteins that are co-

expressed and also closely connected by interactions in the network.  In many cases, 

these “expression-activated networks” correspond to well known protein complexes, 

regulatory pathways, or metabolic reaction pathways, such as the 26S proteasome 

complex (Jansen et al. 2002), the core galactose-induction circuit (Ideker et al. 2002), and 

the glycolysis pathway (Hanisch et al. 2002).  Other methods (Bar-Joseph et al. 2003; 

Lee et al. 2002; Pe'er et al. 2002; Yeang and Jaakkola 2003) use probabilistic approaches 

to match changes in gene expression with transcriptional and/or protein signaling 

interactions that are most likely to regulate them directly.  These methods start with a 

cluster of differentially expressed genes and incrementally choose a small set of 

transcription factors which, by virtue of their levels and/or protein-DNA interactions in 

the network, can maximally predict the observed levels of differential expression in the 



cluster.  All of these approaches serve to reduce network complexity by pinpointing just 

those regions whose gene/protein states are perturbed by the conditions of interest, while 

removing false positive interactions and interactions not involved in the perturbation 

response.  Software is available for several of these approaches, such as the GRAM 

approach by Bar-Joseph et al. (2003).  Others are implemented as extensions to existing 

network visualization software, such as MCODE (Bader et al. 2003) and the 

ActiveModules approach (Ideker et al. 2002) which are implemented as plug-ins to 

Cytoscape. 

The key concept behind the more advanced queries is that, by interrogating a 

protein interaction network with other (complementary) large-scale data such as gene 

expression profiles, it is possible to condense and partition the enormous quantity of data 

into a small number of relevant pieces suitable for lower-level investigation and 

modeling.  Such an approach reinforces the common signal present in both data sets 

while filtering out some of the independent noise.   

As an example application, Begley et al. (Begley et al. 2002,, 2004) performed a 

series of network queries to screen for protein pathways and complexes important for 

cellular recovery to DNA damage.  Begley et al. used a systematic phenotyping approach 

in which growth phenotypes were recorded for a set of 1,615 yeast single-gene knockout 

strains exposed to MMS.  Of the knockout strains, 416 grew more slowly in the presence 

of MMS and showed less than 67% the growth rate of a wild type strain exposed to 

identical MMS conditions.  These strains were assigned an “MMS sensitive” phenotype, 

and the genes deleted from each of these were designated as “MMS essential”. 



To elucidate protein networks involved in the DNA damage response, the MMS 

phenotypic state data were integrated with a large combined protein-protein and protein-

DNA interaction network for yeast (Figure 5a).  In a preliminary step, proteins were 

removed from the network whose distance from MMS-essential proteins was greater than 

one interaction.  Within this filtered network, ActiveModules was used to search for 

connected subnetworks having a higher-than-expected proportion of MMS essential 

proteins.  This search identified four significant modules associated with MMS 

sensitivity.  Figure 5b shows three of these: in addition to proteins already known to be 

associated with the damage response, the modules contained significant numbers of 

proteins involved in protein degradation (e.g., Vma6, Pep12, and Snf7) and several 

proteins of unknown function.  These likely occur because toxins such as MMS also 

cause damage to proteins, activating protein degradation and turnover machinery as an 

integral part of the cellular response. 

 
Network alignment and comparison 
 
A major emerging challenge of protein network biology is to systematically compare and 

contrast biological networks over different species, conditions, cell types, disease states, 

or points in time.  For this purpose, methods are being developed to compare/contrast 

protein interaction networks to predict protein interactions (Pazos and Valencia 2001); to 

assess the specificity of protein interactions (Ramani and Marcotte 2003); and to identify 

conserved interaction complexes and pathways (Kelley et al. 2003; Sharan et al. 2004).   

Recently, we have developed pairwise network alignment algorithms that are used 

to detect linear interaction paths (Kelley et al. 2003) or dense clusters of interactions 

(Sharan et al. 2004) that are conserved between networks.  For instance, the algorithm 



PathBLAST searches for high-scoring “pathway alignments” involving a pair of paths, 

one from each network, in which proteins of the first path are paired with putative 

orthologs occurring in the same order in the second path (Figure 6a).  We have also 

developed a similar algorithm to search for dense interacting clusters of proteins rather 

than linear paths (Sharan et al. 2004).  These two network structures, paths versus dense 

clusters, attempt to capture different biological mechanisms that may be conserved.  Very 

approximately, paths model signal transduction pathways while dense clusters of 

interactions model protein complexes.  PathBLAST is available as a web-based query at 

http://www.pathblast.org.   Target protein-protein interaction networks are currently 

available for H. pylori, S. cerevisiae, C. elegans, D. melanogaster, M. musculus, and H. 

sapiens. A related method that uses cross-species data for predicting protein interactions 

is the interolog approach (Matthews et al. 2001, Yu et al. 2004): a pair of proteins in one 

species is predicted to interact if their best sequence matches in another species were 

reported to interact.   

As an example of network evolutionary comparison, a protein network alignment 

was performed among the protein-protein networks of the budding yeast S. cerevisiae and 

the human gastric pathogen H. pylori (Kelley et al. 2003).  Both the yeast network 

(14,489 interactions among 4,688 proteins, assembled from mass spectrometry and two-

hybrid studies), and the H. pylori network (1,465 interactions among 732 proteins from a 

single two-hybrid study (Rain et al. 2001)) were extracted from the DIP database 

(Xenarios et al. 2002).  The yeast and bacterial networks were analyzed to select the 150 

highest-scoring pathway alignments of length four (four proteins per path), corresponding 

to a level of significance of p ≤ 0.05.  By combining all overlapping pathway alignments, 



each of the 150 fell into one of five conserved network regions, two of which are shown 

in Figure 6 [b-c].  Interestingly, although the putative yeast-bacterial orthologs in these 

regions generally had significant sequence homology (i.e., having BLAST E-values 

<10−10), over 50% of these orthologs were in fact not the overall best BLAST matches 

possible between the two species’ genomes.  Rather, they were identified by their close 

proximity to other orthologous proteins in the protein network.  

Although an entire network vs. network comparison is invaluable for cataloguing 

all of the homologous pathways between and within organisms, it is also desirable to 

query a single protein network with specific pathways of interest.  This procedure is 

similar to using BLAST to interrogate a sequence database with a short nucleotide or 

amino-acid sequence query.  As an example of this approach, we queried the S. 

cerevisiae protein network with a classic mitogen activated protein kinase (MAPK) 

pathway associated with the filamentation response, consisting of a MAPK (Kss1), a 

MAPK kinase or MAPKK (Ste7), and a MAPKK kinase or MAPKKK (Ste11).  MAPK 

pathways transmit incoming signals to the nucleus through activation cascades in which 

each kinase phosphorylates the next one downstream.  As shown in Figure 6d, the 

pathway query identified two other well-known MAPK pathways as the highest scoring 

hits (the low- and high-osmolarity response pathways Bck1-Mkk1-Slt2 and Ssk2-Pbs2-

Hog1).  Such methods will be instrumental in extending comparative molecular biology 

from the level of DNA and protein sequences to the level of the protein network.  

 

Robustness of protein interaction networks 
 
 



Robustness is a property that allows a system to maintain its functions despite external 

and internal perturbations.  This property has been widely observed in many biological 

systems, such as chemotaxis (Alon et al. 1999), circadian rhythms (Morohashi et al. 

2002), and segmental pattern formation in embryogenesis (von Dassow et al. 2000).  

Understanding the origin and principles of robustness in biological networks enables us 

to put various observations about the networks into perspective and to facilitate the 

discovery of principles at the systems level. 

A prominent feature of all cellular networks studied so far is their scale-free 

nature.  Unlike random networks, scale-free networks are highly resistant to random 

failures.  By simulation studies, Albert and colleagues (Albert et al. 2000) showed that 

even if 80% of randomly selected nodes fail, the remaining 20% still form a compact 

cluster with a path connecting any two nodes.  This is because random failure mainly 

affects nodes with few network connections, the absence of which does not disrupt the 

network’s overall integrity. On the other hand, removal of hubs rapidly disintegrates the 

network into small isolated node clusters.  These computational simulations suggest hub 

proteins have an important role in cellular fitness.  In fact, deletion analyses indicate that 

in S. cerevisiae only about 10% of the proteins with fewer than five interactions are 

essential, but this fraction increases to over 60% for proteins with more than 15 

interactions.  This indicates that the protein’s number of interactions plays an important 

role in determining its deletion phenotype (Jeong et al. 2001).  The importance of hubs is 

further supported by their evolutionary conservation: highly connected S. cerevisiae 

proteins have a smaller evolutionary distance to their orthologs in C. elegans (Fraser et al. 

2002) and are more likely to have orthologs in higher organisms (Krylov et al. 2003).  



Although hubs are essential for protecting protein networks from accidental failures, their 

attack vulnerability makes them ideal targets for manipulating and controlling the 

network.  For instance, from a therapeutic point of view, hub proteins can be used to 

screen against small molecule libraries to identify potential drug targets. 

In addition to global topological features that ensure the robustness of protein 

networks, local topological features, i.e., network motifs, is also used to maintain 

robustness.  Negative feedback loops are a principle mode of control to enable robust 

response to perturbations (Kitano 2004).  Alon and colleagues (Alon et al. 1999) have 

shown that bacteria use negative feedback in signal transduction systems to attain the 

perfect adaptation that allows chemotaxis to occur in response to a wide range of stimuli.  

Positive feed back contributes to robustness by amplifying stimuli so that the activation 

level of downstream pathways can be clearly distinguished from non-stimulated states 

and these states can be maintained.  The best-documented example of a positive feedback 

loop functioning in signal transduction is the Mos-mitogen-activated protein kinase 

(MAPK) cascade in Xenopus oocytes (Ferrell J. Jr. 2002).  This cascade is activated 

when oocytes are induced to mature by the steroid hormone progesterone.  The positive 

feedback loop in the signal transduction process ensures that oocyte converts a graded, 

reversible triggering stimulus into an all-or-none, irreversible cell-fate decision.   

 

Evolution of protein interaction networks 
 
As the most prominent of feature of protein interaction networks and other cellular 

networks, the origin of scale-free topology has attracted the attention of many 

researchers.  Two kinds of evolutionary processes have been invoked to explain this 



topological feature of protein interaction networks. The first kind of process consists of 

gene duplications followed by either silencing of one of the duplicated genes or by 

functional divergence of the duplicates.  In terms of the protein interaction network, a 

gene duplication corresponds to the addition of a node with links identical to the original 

node, followed by the divergence of some of the redundant links between the two 

duplicate nodes.  Barabasi and Albert (1999) were the first to suggest that gene 

duplication is the major mechanism for generating the scale-free topology of protein 

interaction networks.  According to their growth and preferential attachment model, 

duplicated genes produce identical proteins that interact with the same protein partners.  

Therefore, each protein that is in contact with a duplicated protein gains an extra link.  

Highly connected proteins are more likely to have a link to a duplicated protein than their 

sparsely connected cousins, and therefore they are more likely to gain new links if a 

randomly selected protein is duplicated.  A mathematical model of the growth of 

networks based on this principle produces scale-free topologies with parameters 

comparable to those of real-world networks (Barabasi and Albert 1999).  Two lines of 

empirical evidence support this model: An analysis of metabolic networks shows that 

metabolites of some of the most ancient pathways, such as glycolysis and the 

tricarboxylic acid (TCA) cycle, are among the most connected substrates of the network 

(Wagner and Fell, 2001).  In terms of protein interaction networks, comparative 

genomics analyses have revealed that, on average, evolutionarily older proteins have 

higher connectivity than their younger counterparts (Wagner 2003, Eisenberg and 

Levanon 2003).  The preferential attachment model aims to capture a general mechanism 

of network evolution capable of producing the observed scale-free topology. But it is 



likely to operate under functional constraints, as protein function determines types of 

binding partners, the degree of connectivity, and time of origin of the network (Kunin et 

al. 2004). 

The second type of evolutionary process consists of point mutations in a gene 

resulting in modifications of the interface between interacting proteins (Jones and 

Thornton 1996). Consequently, the corresponding protein may gain new connections 

(attachment) or lose (detachment) some of the existing connections to other proteins. 

Berg et al. (2004) refer to these attachment and detachment processes collectively as link 

dynamics.  They estimate the empirical rates of link dynamics and gene duplication in the 

yeast protein network and find the former to be at least one order of magnitude higher 

than the latter.  Based on this observation, they propose a new model for the evolution of 

protein networks in which link dynamics due to point mutations are the major 

evolutionary forces shaping the scale-free topology of the network while slower gene 

duplication processes mainly affect its size.  According to this model, the fast link 

turnover rate leads to the fast loss of connectivity of proteins encoded by duplicate genes.  

This is consistent with an earlier observation that the majority of duplicate pairs have few 

or no interaction partners in common (Wagner 2001).   

All of this previous research on protein network evolution has been directed 

towards understanding the origin of its global structural features.   In contrast, little is 

known about the evolutionary process(es) that shape the network’s local wiring diagrams, 

i.e., network motifs, although it is often implied that the local properties reflect solely 

evolutionary selection towards desirable functional traits (Shen-Orr et al. 2002, Mangan 

et al. 2003, Milo et al. 2004).  A recent study (Vazquez et al. 2004) demonstrates that a 



network’s global and local structures mutually define and predict each other, raising 

intriguing questions about how the evolution of network motifs shape a network’s overall 

structure and vice versa. 

Perspectives 
 
Although significant advances have been made in the past few years, protein network 

biology is still in its infancy.  Future progress is expected in several directions.  First and 

most importantly, to further expand our knowledge about protein interaction networks, 

we need to improve our data-gathering capabilities.  This means development of highly 

sensitive and accurate methods to allow data collection under various cellular functional 

and temporal states as well as in different cell types in the case of metazoans.  These new 

data sets will not only improve coverage of the networks but also enable us to ask 

questions about the dynamics of protein interaction networks.  

In contrast to the yeast protein network, the human network is largely unexplored.  

Based on the existing data for yeast proteins, a conservative estimate puts the total 

number of protein interactions in human at roughly 40,000-200,000 (Bork et al. 2004).  

Currently, about 20,000-30,000 total interactions are recorded in the literature (Peri et al. 

2004), mostly from small-scale studies with a few medium-scale studies centered on 

particular pathways (Bouwmeester et al. 2004) or cellular machineries (Andersen et al. 

2003).  Thus, there is a pressing need for experimental methods to be scaled up to the size 

of human proteome.   

Meanwhile, novel computational approaches need to be developed to transfer as 

many interactions as possible from model organisms to human.  Also, just as theoretical 

advances in sequence evolution were essential for the development of modern sequence 



analysis algorithms, further advances in our understanding of network evolution will 

surely benefit many aspects of network analysis, such as cross-species network 

comparisons.  

Interaction data provide a high-level representation of the key molecular components 

and interactions of a biological system.  Queries against this interaction network highlight 

particular pathways and complexes of interest, which are then prime candidates suitable 

for low-level verification and modeling as important signaling and compensatory 

pathways.  Over successive iterations of modeling and experiment, the network model 

becomes annotated with increasingly low-level and pathway-specific parameters such as 

physico-chemical reaction rates, binding constants, and diffusion and transport 

coefficients.  The promise of this approach is that ultimately, protein network models 

may provide a comprehensive “wiring diagram” lending global insight into normal and 

diseased cell function. 
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Table 1: Current estimates of the volume of experimental protein-protein 
interaction data available in the public domain.  

 
 Number of Proteins Number of Interactions 
 H. pylori 

Two-hybrid assays 710 [Rain et al. 2001] 1425 
 E. coli 

Co-immunoprecipitation/ 
Mass spectrometry 530 [Butland et al. 2005] 5420 (spoke) 

 S. cerevisiae 
Two-hybrid assays  934[Uetz et al. 2000] 854 

 4131[Ito et al. 2001] 3986 
Co-immunoprecipitation/ 

Mass spectrometry 1361[Gavin et al. 2002] 3221 (spoke) 
31304(matrix) 

 1560[Ho et al. 2002] 3589(spoke) 
25333(matrix) 

Synthetic lethal assays 1029[Tong et al. 2004] 3627 
DIP (small scale 

experiments) 1629 5068 

 C. elegans 
Two-hybrid assays 2898[Li et al. 2004] 4027 

 D. melanogaster 
Two-hybrid assays 7048[Giot et al. 2003] 20405 

 H. sapiens 
Co-immunoprecipitation/ 

Mass spectrometry 
32[Bouwmeester et al. 

2004] 221 

HPRD (small scale 
experiments) 2750[Peri et al. 2004] 10534 

 
 



Table 2: Brief overview of protein interaction databases 
 
Protein interactions 
ADVICE http://advice.i2r.a-star.edu.sg 
BIND http://bind.ca/ 
Bioverse  http://bioverse.compbio.washington.edu/ 
Curagen http://curatools.curagen.com/pathcalling_portal/index.htm
CYGD/MIPS http://mips.gsf.de/services/ppi 
DIP http://dip.doe-mbi.ucla.edu/ 
GRID http://biodata.mshri.on.ca/grid/servlet/Index 
HPRD http://www.hprd.org/ 
Hybrigenics/PIMRider http://pim.hybrigenics.com/pimriderext/common/ 
MINT http://mint.bio.uniroma2.it/mint/ 
PLEX http://apropos.icmb.utexas.edu/plex/plex.html 
STRING http://string.embl.de/ 
Protein networks/pathways 
Biobase/Transpath http://www.biobase.de/pages/products/transpath.html 
Biocarta http://www.biocarta.com/genes/index.asp 
Genmapp http://www.genmapp.org/links.html 
Reactome http://www.reactome.org/ 
  



 
 
Table 3: Protein network visualization and analysis tools. 
 

  Cytoscape V2.0 Osprey V1.2.0 Pajek V1.01 ProViz V1.0 WebInterViewer 

Website  http://www.cytoscape.org http://biodata.mshri.on.ca/osprey http://vlado.fmf.uni-
lj.si/pub/networks/pajek http://cbi.labri.fr/eng/proviz.htm http://interviewer.inha.ac.kr 

License Free Free for educational, research, and non-
for-profit  Free for non-commercial use Free Free 

G
en

er
al

Platform Linux, Mac, Windows Linux, Mac, Windows Windows Linux Linux, Mac, Windows 

Import 
 Files Flat file (space-delimited interactions, 

node and edge attributes, gene 
functional annotations), GML  

Flat file (tab-delimited gene names, 
interactions, experimental system, 
source, literature evidence) 

Flat file (space-delimited gene names, 
interactions), Vega graphs, Gedcom, 
Ucinet DL…  

Tulip, PSI-MI (XML) Flat file (tab-delimited gene names and 
interactions), GML, XML 

 Databases - GRID interaction data - IntAct interaction data DB on InterViewer3 server or local 
data server 

  Additional Expression data, arbitrary data 
attributes on nodes and edges - - - - 

Export 
 Text files Flat file (space-delimited, genes, 

interactions), GML 
Flat file (tab-delimited, genes and 
interactions) 

Flat file (space delimited, node and 
edge attributes), Vega graphs, Gedcom, 
Ucinet DL… 

Tulip, PSI-MI  Flat file (tab-delimited, genes and 
interactions), XML, EdgeCnt, IG1 D

at
a 

E
xc

ha
ng

e 

  Image files EPS, JPEG, PDF, PNG, PS, SVG JPEG, PNG, SVG BMP, EPS/PS, Kinemage, MDL, SVG, 
VRML PNG BMP (with copyright note)  

Graph layout 5 algorithms 7 algorithms 7 algorithms 3 algorithms 2 algorithms 

Data attributes 
 Proteins All imported properties GO terms All imported properties GO terms - 

 Interactions All imported properties Source, experimental system (e.g. two-
hybrid), literature evidence All imported properties PSI-MI terms - 

Visual  mappings 
 Proteins Color, shape, line type, size, label, font Color Color, line type, size - - V

is
ua

liz
at

io
n 

 Interactions Color, line type, arrow, label, font Color Color, line type, arrow - - 

Filters 
 Proteins Attribute values GO terms Attribute values GO terms - 

 Interactions Type (e.g. protein-DNA) Experimental system, source Attribute values  PSI-MI terms - 

 Network Node degree, distance Node degree, distance Node degree, distance Node distance Node distance A
na

ly
si

s 

Multiple data 
superposition - + + + + 



Subnetwork 
identification MCODE, ActiveModules plug-ins - - - - 

Group and collapse 
nodes - - - - Group cliques,  nodes with same 

interactions 

Network comparison PathBLAST plug-in - Intersection, union, difference Find shared  nodes and edges Find shared nodes and edges 

Extras Many plug-ins for extended analysis, 
e.g.  netwk comparison via PathBLAST - Many operations on graphs and metric 

computation 
URL links to external source for node 
and edge properties 

Data server for central data storage; 
List of connected groups 

Pros 

• Flexible and extensible through many 
existing and user defined plug-ins 

•  Superposition of gene expression and 
other data 

• Direct import and quick visualization 
from GRID DB 

• Superposition of  different datasets 

• General network vis. and analysis tool 
• Multiple formats for exporting images 
• Rich set of operations on graphs and 
metric computation 

• Interaction filter based on PSI-MI 
controlled vocabulary terms 

• New analyses as plug-ins using the 
Tulip graph management platform 

• Central storage of data on server 

C
on

cl
us

io
ns

 

Cons 
• Requires substantial preprocessing of 

data, e.g. special network formats 
and data attribute lists 

• Limited visualization possibilities for 
external data sets (outside of GRID)  

• Single platform 
• Not specifically designed for 

molecular interaction networks 
• Requires much data preprocessing 

• Single platform 
• Limited visualization functionality 

• No visualization of protein or 
interaction attributes (e.g. expression) 

• Only one filter 
• Very brief documentation  



 
 
Figure 1: Principles of two high through-put technologies for identifying protein 
interactions. [a] Yeast two hybrid system. Typical two-hybrid screens use a library of 
random DNA or cDNA fused to a transcriptional activation domain (AD), expressed in 
yeast (‘preys’; circles denote plasmids). The library clones are mated to a strain of 
opposite mating type that expresses a protein of interest (‘bait’, B) as a fusion to a DNA-
binding domain (DBD). If bait and prey interact in the resulting diploid cells, they 
reconstitute a transcription factor, which activates a reporter gene whose expression 
allows the diploid cell to grow on selective media (here, without histidine). Positive 
clones have to be picked, their DNA isolated and the encoded plasmids sequenced in 
order to identify interacting proteins. Reproduced with permission from Uetz 2002. [b] 
Mass spectrometry. Intact proteins are proteolytically digested.  The resulting peptide 
mixture is fractionated and introduced into a mass spectrometer. The mass spectrometer 
is responsible for separating peptide ions by their mass-to-charge (m/z) ratio.  The 
peptides then serve as surrogate markers for the protein sequence.  Proteins are identified 
by searching the resulting mass spectra through sequence databases. 
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YGL161W — Pep12
YPL246C — YHR105W
YHR105W — YGL161W

(a)  

Figure 2: List [a] versus graphical network representation [b] of protein 
interactions.  The two representations differ in localization (a protein occurs multiple 
times in the list but exactly once in the layout); context (in the layout, the neighbors of a 
protein are easily identified and studied; and mental image (the network layout allows 
proteins to be memorized by position) (Eades et al. 1991).  In positioning the nodes, 
secondary information can be employed to guide the layout; for example, proteins can be 
spatially grouped by localization or function. In this way, a particular arrangement of the 
proteins can even increase the information content. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 

Figure 3: A map of protein-protein interactions in Saccharomyces cerevisiae based on a 
early systematic yeast two-hybrid experiment (Uetz et al. 2000), illustrates that a few 
highly connected nodes hold the network together.  The color of a node indicates the 
phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal, 
orange = slow growth, yellow = unknown). Reproduced with permission from Barabasi 
and Oltvai, 2004.   
 
 
 



 
 
Figure 4. Examples of network motifs in the yeast regulatory network. Regulators are 
represented by blue circles; gene promoters are represented by red rectangles. Binding of 
a regulator to a promoter is indicated by a solid arrow. Genes encoding regulators are 
linked to their respective regulators by dashed arrows. For example, in the autoregulation 
motif, the Ste12 protein binds to the STE12 gene, which is transcribed and translated into 
Ste12 protein. Reproduced with permission from Lee et al. 2002.  
 
 
 
 
 
 
 
 



 

Figure 5: Screening damage phenotypes vs.  the interaction network [a] A protein 
interaction network was integrated with 1,615 yeast deletion phenotypes gathered in 
response to MMS. [b] A search of the network found protein complexes containing 
significant numbers of MMS-essential proteins. Three of four identified regions are 
shown. Dark gray nodes represent MMS-essential proteins; white nodes were untested. 
Reproduced with permission from Begley et al. 2002.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure 6: PathBLAST network alignment across species. [a] A model pathway 
alignment between two protein networks, where interactions in a pathway appear 
vertically and horizontal dotted lines link proteins with significant sequence similarity. 
Insertions (e.g., protein C) or mismatches (e.g.. proteins E and g) in the alignment are 
permitted but penalized. Panels [b-c] show aligned regions from the networks of H. 
pylori (orange; left) vs. S. cerevisiae (green; right). Bacterial/yeast protein pairs with 
significant sequence similarity are placed on the same row (e.g., deaD and Dbp2 in row 1 
of [b]). [d] Querying the yeast network with a specific MAP kinase pathway involved in 
the yeast filamentation response. In panels [b-d], solid links indicate direct protein 
interactions, whereas dotted links indicate a single protein insertion (additional protein in 
one of the compared network). 
 
 
 
 
 



 
 
Figure 7: Evolutionary processes shaping protein interaction networks. The progression 
of time is symbolized by arrows. [a] Link attachment and [b] link detachment occur 
through point mutations in the gene encoding an existing protein. These processes affect 
the connectivities of the protein whose coding sequence undergoes mutation (shown in 
black) and of one of its binding partners (shown in gray). Empirical data shows that 
attachment occurs preferentially towards partners of high connectivity. [a] and [b] are 
collectively termed link dynamics. [c] Gene duplication usually produces a pair of nodes 
(shown in black) with initially identical binding partners (shown in gray). Empirical data 
suggests duplications occur at a much lower rate than link dynamics and that redundant 
links are lost subsequently (often in an asymmetric fashion), which affects the 
connectivities of the duplicate pair and of all its binding partners.  Reproduced with 
permission from Berg et al. 2004.  
 
 


