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Abstract 

Background: Data from large-scale protein interaction screens for humans and model 

eukaryotes has been invaluable for developing systems-level models of biological 

processes. Despite this value, only a limited amount of interaction data is available for 

prokaryotes.  Here we report the systematic identification of protein interactions for the 

bacterium Campylobacter jejuni, a food-borne pathogen and a major cause of 

gastroenteritis worldwide. 

Results: Using high-throughput yeast two-hybrid screens we detected and reproduced 

11,687 interactions.  The resulting interaction map includes 80% of the predicted C. jejuni 

NCTC11168 proteins and places a large number of poorly characterized proteins into 

networks that provide initial clues about their functions.  We used the map to identify a 

number of conserved subnetworks by comparison to protein networks from Escherichia 

coli and Saccharomyces cerevisiae.  We also demonstrate the value of the interactome data 

for mapping biological pathways by identifying the C. jejuni chemotaxis pathway.  Finally, 

the interaction map also includes a large subnetwork of putative essential genes that may 

be used to identify potential new antimicrobial drug targets for C. jejuni and related 

organisms.    

Conclusions: The C. jejuni protein interaction map is one of the most comprehensive yet 

determined for a free-living organism and nearly doubles the binary interactions available 

for the prokaryotic kingdom.  This high level of coverage facilitates pathway mapping and 

function prediction for a large number of C. jejuni proteins as well as orthologous proteins 

from other organisms.  The broad coverage also facilitates cross-species comparisons for 

the identification of evolutionarily conserved subnetworks of protein interactions.   
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Background 

A catalog of all the protein interactions that occur in an organism could provide a useful 

starting point for understanding the functions of proteins and entire biological systems.  

Several research groups have performed large-scale screens with the goal of identifying all 

of the protein interactions, or the interactome, for a given organism.  One productive 

approach has been to co-affinity purify (co-AP) members of protein complexes using 

affinity-tagged bait proteins and then to identify the complex members using mass 

spectrometry (MS).  This approach has been particularly useful for single-cell model 

organisms like Escherichia coli and Saccharomyces cerevisiae, in which large sets of 

affinity-tagged proteins can be expressed readily and co-AP/MS can be performed on large 

quantities of cells [1-6].  A complementary approach that detects binary protein 

interactions rather than protein complexes is the yeast two-hybrid system [7].  In contrast 

to the co-AP/MS studies, large-scale yeast two-hybrid screens measure interactions in an 

artificial setting, the yeast nucleus, with the goal of mapping all of the possible specific 

binary interactions that may occur in vivo.  Large-scale yeast two-hybrid screens have been 

used to probe the interactomes of a wide range of organisms from viruses to humans (see 

refs. [8-10] for reviews).  The yeast two-hybrid screens and the co-AP/MS studies provide 

at least a static picture of protein interactions that may occur under one or a defined set of 

in vivo conditions.  The resulting interaction maps can provide a framework for 

understanding pathways and molecular machines, particularly when combined with other 

types of functional genomics data including gene phenotypes and dynamic information 

such as gene expression, protein expression, and protein localization data.  

 

Very few bacterial species have been analyzed at the proteome level for protein 

interactions.  For example, large-scale systematic determination of binary protein 

interactions has only been described for one bacterium to date, Helicobacter pylori [11].  

That study resulted in interactions covering 46 % of the H. pylori proteome (Additional 

data file 1).  Meanwhile, E. coli is the only bacterium for which protein complex 

purifications have been applied at the proteome scale [1, 6].  Binary protein interactions 

predicted from these studies include 80% of the E. coli proteome.  With the immense 

number and diversity of different bacterial species that exist, a huge reservoir of 
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prokaryotic protein interactions have yet to be sampled.  

 

Campylobacter jejuni is a Gram-negative food-borne pathogen that is a major cause of 

gastroenteritis in humans [12].  Infection with C. jejuni has also been associated with the 

autoimmune peripheral neuropathy known as Guillain Barré syndrome and 

immunoproliferative small intestinal disease [13-15].  Despite the importance of C. jejuni 

as a pathogen, much remains to be learned about its biology and mechanisms for causing 

disease.  The functions of over 50% of the 1654 proteins predicted to be encoded by the C. 

jejuni NCTC11168 genome are either unknown or poorly characterized as implied from 

their unnamed gene status [16].  Clues about the functions of these proteins could come 

from protein interaction data, yet very little such data exists.  Most of the protein 

interaction data for C. jejuni comes from small-scale experiments with individual proteins 

or from the somewhat less reliable method of predicting interactions based on 

measurements with orthologous proteins in other organisms.  Despite the proven utility of 

protein interaction data, most of the C. jejuni proteins are not yet known or predicted to be 

involved in an interaction.  Thus, interactome data could significantly aid C. jejuni 

research.  Because co-AP/MS studies would be difficult for this organism we set out to 

map interactions using the two-hybrid system.  

 

Here we report the results of a proteome-scale systematic screen of C. jejuni protein 

interactions.  Using a comprehensive yeast two-hybrid approach we tested over 89% of the 

predicted C. jejuni NCTC11168 proteins for interactions and identified thousands of novel 

protein interactions covering 80% of the proteome.  For each interaction we generated a 

confidence score that reflects its probability of being biologically relevant, resulting in 

2,884 interactions with high confidence scores.  We demonstrate how this data can be used 

to map pathways, generate hypotheses about protein function and network evolution, and 

to identify potential new drug targets.  We have assembled all of the interactions from this 

study into a single comprehensive C. jejuni protein interaction database [17] that also 

contains computational predictions [18]  and interolog [19] predictions based on E. coli 

and H. pylori protein interactions.  The interaction data can be readily accessed and 

downloaded using the web-based application tool called IM Browser [20]. 
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Results  

 

Systematic identification of protein interactions for C. jejuni NCTC11168 

We used a yeast two-hybrid pooled matrix approach [21, 22] to screen for binary 

interactions among the predicted C. jejuni NCTC11168 proteins.  We generated two arrays 

of yeast strains that expressed full length C. jejuni ORFs fused to the LexA DNA-binding 

domain (BD) or a transcription activation domain (AD), respectively (Materials and 

Methods).  Over 89% of the predicted C. jejuni ORFs are represented in the arrays (Table 

1).  To sample all possible binary interactions, each member of the BD array was mated 

with pools containing approximately 96 AD strains and the resulting diploids were assayed 

for reporter activity.  Each BD strain was then tested with every AD strain comprising the 

pools with which it was positive to identify the specific interacting protein pair.  The 

activities of the two yeast two-hybrid reporters were independently quantified based on 

growth on selective media and color on X-Gal plates, as previously described [21].  Our 

screen initially detected a total of 16,022 putative interactions with above-threshold 

reporter scores (after subtraction of background activity for BD fusions capable of 

activating the reporters on their own).  An additional 82 unique interactions were identified 

using a library screen (Materials and Methods).  We retested the combined 16,104 initial 

positives in individual one-on-one mating assays of BD strains and AD strains, and 

reproduced 11,687 of them.  The majority of non-repeating interactions initially had shown 

low levels of reporter activity. The 11,687 repeated interactions were included in our final 

data set (CampyYTH v3.1) (Figure 1a).  

 

The interaction map includes all of the major protein types and is not significantly enriched 

for any particular gene classification (Additional data file 2).  As expected, however, 

integral membrane proteins are slightly depleted (Additional data file 3), which was likely 

due to failure to reach the nucleus or improper folding in the nuclear environment.  The 

high coverage (80% of the predicted proteome) can be attributed in part to the number of 

proteins tested, to the systematic pooled matrix approach, and to the use of regulated 

promoters to detect interactions with toxic proteins or proteins that activated the reporters 
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on their own.  For example, proteins toxic or inhibitory to yeast were successfully assayed 

by expressing the fusion proteins with an inducible rather than constitutive promoter [23].  

Constitutive expression of inhibitory proteins can result in down regulation of the fusion 

proteins and loss of the ability to detect interactions [21].  In this study we found that 114 

(7%) of the proteins in our array were either toxic or inhibitory to yeast (Additional data 

file 4).  Nevertheless we were able to detect over 700 interactions that involved these 

proteins, including the well-known GroES-GroEL interaction. 

 

Data quality and confidence scores.   

To help distinguish true positives from false positives we applied a statistical method to 

generate confidence scores for each interaction [24, 25].  We used logistic regression to 

assign weights to a set of experimental interaction attributes based on how well they 

correlated with biological significance.  Sets of putative true positives and false positives 

were used to train the scoring system on biological significance (Materials and Methods).  

One interaction attribute that strongly correlated with putative true positives, for example, 

was the level of reporter activity, an attribute not determined in most previous large-scale 

two-hybrid screens.  An attribute that correlated with false positives was the number of 

interaction per protein. The weighted attributes were combined in a model that assigned 

probability scores between 0 and 1 to each interaction.  Choosing 0.5 as the threshold 

between low and high confidence interactions resulted in 2884 (25%) of the reproduced 

interactions falling into the higher confidence set (Figure 2a), which covered 67% of the C. 

jejuni proteins.  As an independent test of the confidence-scoring system, we demonstrated 

that interactions with higher confidence scores were significantly more likely to involve 

pairs of proteins known to function in the same biological process, as would be expected 

for true positives, than do an equal number of randomly selected low scoring interactions 

(p < 3*10
-57

) (Figure 2b).  For this analysis we used the biological role classifications that 

had been assigned previously [26], but which played no part in generating the confidence 

scores.  Similarly, we found that the higher confidence interactions generally included 

more pairs of proteins that share more detailed Gene Ontology [27] functional annotations 

(Figure 2c).  Combined, these analyses indicate that the confidence scores are a useful 

measure of biological significance to guide future studies.   
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To further assess the quality of the C. jejuni interaction data we compared it to E. coli and 

H. pylori data sets presumed to be enriched for true positives.  First, we considered a set of 

high-confidence E. coli protein interactions from literature-cited low-throughput 

experiments compiled within the Database of Interacting Proteins (DIP) [28].  Reciprocal 

best-match C. jejuni orthologs of the E. coli proteins were used to predict 147 conserved C. 

jejuni interactions or interologs.  The overlap between the two-hybrid data and the 

predictions from the E. coli reference set was 28 of 147, significantly (p-value = 2x10
-11

) 

more than the overlap between the reference set and random maps with the same size and 

topology as the two-hybrid map (Figure 3a).  The overlaps between our data and interologs 

predicted from H. pylori yeast two-hybrid data [11] or E. coli protein complexes [1, 6] 

were also significantly greater than expected by chance (Figure 3b-d).  Moreover, the 

fraction of C. jejuni data that overlaps with the reference set is similar to that for the E. coli 

and H. pylori high throughput data sets (Table 2).  This analysis suggests that the C. jejuni 

yeast two-hybrid map has rates of true positives, false positives, and false negatives similar 

to the previous maps for E. coli and H. pylori. 

 

The C. jejuni protein interaction network   

The entire data set of C. jejuni interactions and the subset of higher confidence interactions 

each assemble primarily into single large network components containing 99% and 95% of 

their interactions, respectively (Figure 1).  Both networks have characteristics similar to 

those observed for other large-scale protein interaction datasets (Additional data file 5).  

Global analysis of the connectivity (k) of each protein, also known as a protein’s degree, 

revealed a network in which most proteins have few connections, some (hubs) have many 

connections, and the distribution of interactions per protein is nonrandom (Figure 4a, b).  A 

rank-degree plot of the CampyYTH v3.1 data is best modeled by an exponential curve 

rather than the power law expected for a scale-free network [29] (Figure 4c).  In many 

studies, the process of selecting the higher confidence interactions has involved removal of 

the most highly connected proteins, or in our case, trimming interactions preferentially 

from those proteins.  While this enriches for biologically relevant true positives, it may 

also change the topology of the network.  Consistent with this, the higher confidence C. 
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jejuni network appears to be scale-free (Figure 4d).   

 

Several studies have shown that highly interconnected regions of experimentally derived 

protein interaction maps correspond to biologically relevant protein modules, such as 

complexes or pathways.  Proteins with related functions, for example, tend to be clustered 

into highly interconnected subnetworks [25, 30, 31].  Moreover, interactions within more 

highly interconnected regions of protein networks tend to be enriched for true positives 

[32, 33].  This suggests that clustering is a biological feature of a protein interaction map.  

The C. jejuni protein network has many groups of highly interconnected proteins, as 

indicated by its average clustering coefficient (0.10), which is high compared to other 

large-scale interaction maps (Additional data file 5).  The C. jejuni higher confidence set, 

for example, is more highly clustered than the Drosophila interaction map (average 

clustering coefficient of 0.05 vs. 0.02, respectively) even though the average number of 

interactions per protein in the two maps is similar.  This could be explained by the fact that 

the C. jejuni map covers much more of the proteome than the Drosophila map.  Indeed, 

among all the maps there is a general trend of increased clustering as the coverage 

increases (Additional data file 5). 

  

Cross-species protein interaction network conservation  

We compared the C. jejuni protein interaction network to protein networks from E. coli, H. 

pylori, and S. cerevisiae using the NetworkBlast algorithm, which can identify 

subnetworks that are conserved among species (Materials and Methods) [34].  The 

algorithm identified 48 conserved subnetworks between C. jejuni and E. coli, and 19 

between C. jejuni and S. cerevisiae.  Representative conserved subnetworks are shown in 

Figure 5a.  The subnetworks were found to be statistically significant compared to a 

random distribution generated by the NetworkBlast algorithm (Additional data file 6).  

Most of the conserved subnetworks were enriched for proteins with specific gene ontology 

functions (Additional data file 6), suggesting that they represent important functional 

pathways or protein complexes.  Surprisingly, comparison of C. jejuni and H. pylori, two 

organisms from the same order, resulted in no significant conserved subnetworks.  This is 

possibly a result of low interactome coverage in the H. pylori protein-protein interaction 
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network relative to the others (0.93 interactions per protein in H. pylori versus 1.47, 2.44, 

or 9.52 interactions per protein in the entire proteome of E. coli, S. cerevisiae, or C. jejuni, 

respectively).  Furthermore, the fraction of the genome covered by the interaction networks 

differs markedly between species.  Because the NetworkBlast algorithm identifies densely 

conserved regions of protein networks, sparse regions conserved between H. pylori and C. 

jejuni would not have been detected.  Further analysis of the conserved subnetworks in this 

study allowed the prediction of a total of 379 new C. jejuni protein interactions (Additional 

data file 7).  These interactions were not present in the experimental yeast two-hybrid 

analysis, but were derived from the significant conserved subnetworks based on the 

presence of the orthologous interactions in E. coli or S. cerevisiae (Materials and 

Methods).  Such predictions have become a powerful way to construct more complete 

interaction maps using incomplete experimental data [34, 35]. 

 

To explore the potential relationships among conserved subnetworks, we used hierarchical 

clustering to group proteins by their subnetwork memberships (Figure 5b).  These clusters 

support the idea, previously argued by Gavin et al. [3], that the network is composed of a 

set of functional “cores” that interact with interchangeable “modules” to constitute distinct 

cellular functions.  Both cores and modules appear as groups of proteins with similar 

profiles of subnetwork membership; however, while core proteins appear in many 

subnetworks, modules appear in relatively few.  Moreover, cores may appear in the 

presence or absence of multiple modules, whereas modules are generally found only in the 

presence of a particular core.  These data suggest a higher level of organization amongst 

protein interactions within organism-wide interaction networks.  Additionally, hierarchical 

clustering also reveals that the conserved portion of the C. jejuni protein-protein interaction 

network generated from the comparison of C. jejuni and E. coli is distinct from that 

generated by the comparison of C. jejuni and S. cerevisiae.  This may reflect key 

differences in divergence between the prokaryotes C. jejuni and E. coli versus the 

eukaryote S. cerevisiae. 

 

A framework for protein function predictions and pathway mapping 

Examination of proteins in the C. jejuni map that have been assigned a function (for 
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example, based on sequence similarity to characterized proteins) reveals that proteins 

involved in the same process tend to interact with each other more frequently than 

expected by chance (Additional data file 10).  This is consistent with the idea that 

interacting proteins in the map often function in the same pathway or protein complex.  

The C. jejuni interaction map, therefore, can be used to predict the biological role of 

uncharacterized proteins based on the functions of interacting proteins, as demonstrated for 

eukaryotic protein networks [30].  An analysis of proteins involved in flagellum 

biosynthesis provides a useful example.  The C. jejuni interaction map includes an 

interaction between FliS, a putative flagellum assembly export chaperone, and FlaA and 

FlaB, the flagellin subunits comprising the flagellum.  This is consistent with orthologous 

protein interactions detected in Salmonella typhimurium [36], and in the solved Aquifex 

aeolicus co-crystal structure of FliS complexed with a FliC (flagellin) fragment [37].  

Unique to our C. jejuni dataset, however, is the additional interaction detected between 

FliS and the secreted protein FlaC.  Despite homology to FlaA and FlaB at the N and C 

termini, FlaC is not a component of the flagellum, but rather may have a role in cell 

invasion [38].  Experimental data indicates that the flagellar apparatus is required for 

secretion of FlaC [38].  Our interaction data suggests that FliS may help mediate FlaC 

export.  The map likewise connects 663 other poorly characterized proteins into networks 

that provide initial clues about their functions (Figure 1). 

 

The C. jejuni protein interaction dataset can also serve as a framework for mapping 

functional pathways, such as the chemotaxis signaling pathway (Figure 6a, b).  Although 

not well characterized in C. jejuni, orthologs have been identified for the prototypical 

chemotaxis proteins CheW, CheA, CheY, and FliM [26, 39].  In the canonical pathway, 

chemoattractants bind chemoreceptors known as methyl-accepting chemotaxis proteins 

(MCPs), which then activate the histidine kinase CheA in a complex stabilized by CheW.  

CheA phosphorylates CheY, which then interacts with the FliM protein at the base of the 

flagellar motor resulting in changes in the direction of flagellar rotation.  A search of the C. 

jejuni map for interactions involving motility and chemotaxis-related proteins reveals a 

large connected subnetwork of proteins (Figure 6a).  The subnetwork includes the expected 

interactions between a putative MCP (Cj0262c) and CheW, CheW and CheA, and CheA 
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and CheY (Figure 6b).  The interaction between CheY and FliM, however, was missed, 

most likely because it depends upon CheY phosphorylation on a specific aspartate residue 

[40, 41], a modification unlikely to be provided by yeast.  We also identified interactions 

between the poorly characterized CheV protein, and three putative MCP proteins, Cj0262c, 

Cj0448c, and Cj1110c, supporting previous suggestions that CheV may function early in 

the signal transduction pathway, similar to CheW [39, 42].  Lastly, we detected an 

interaction between CheA and Cj0643 (Figure 6a).  This interaction was predicted 

previously [43] because Cj0643 contains the conserved CheY-like receiver domain.  

Cj0643 also contains a diguanylate-cyclase domain indicating the potential for 3’,5’-cyclic 

diguanylic acid (cdiGMP) biosynthetic activity [44].  CdiGMP is a signaling molecule in 

some bacteria [44].  Perhaps in C. jejuni the interaction between CheA and Cj0643 links 

Cdi-GMP generation to conditions outside of the cell.   

 

A network of putative essential genes  

Several groups have shown that in yeast, essential genes, which are genes required for 

growth or viability, are more likely to encode hubs in the protein network than nonessential 

genes [45-47].  To explore the relationship between essential genes and protein interactions 

in the C. jejuni network we generated a list of putative essential C. jejuni genes based on 

orthology to genes proposed to be essential in E. coli and Bacillus subtilis based on 

experimental evidence in those organisms (Materials and Methods).  We found higher 

percentages of putative essential genes amongst proteins with larger numbers of 

interactions (Figure 7, see also Materials and Methods).  It follows from this finding that, 

like in yeast, hub proteins are more likely to be essential than non-hub proteins.  Thus, 

network topology may provide one way to estimate the potential importance of particular 

genes and may be useful in searches for new candidate drug targets. 

 

Essential proteins often function together in pathways or processes that are important for 

cell growth or viability.  Consistent with this, we found that the C. jejuni map contains 

interactions between putative essential proteins significantly more frequently than expected 

by chance (Additional data file 11).  Similar results have been described for yeast protein 

interaction maps [46].  One consequence of this enrichment for essential-essential 
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interactions is that groups of essential proteins can form interconnected subnetworks 

within the interaction map.  Additionally, the C. jejuni map may be used to predict that 

some of the previously uncharacterized proteins may be important for growth or viability 

based on their interactions with known essential proteins.  To create a network enriched for 

important proteins we identified a subnetwork of interconnected proteins predicted to be 

essential in C. jejuni based on orthology to essential proteins in E. coli and B. subtilis 

(Figure 8, triangular, diamond, and rectangular nodes).  To identify additional putative 

essential or important proteins, we added proteins that connect to two or more of the 

essential nodes through high confidence interactions (circular nodes).  The resulting map 

(Figure 8) contains 264 proteins, many of which are of unknown function (yellow), and 

identifies potential connections amongst many proteins involved in processes known to be 

essential for viability, including ribosome function and DNA synthesis and repair.  For 

example, in Figure 8, BoxA highlights the interaction between RecJ and SSB.  SSB is a 

single-stranded DNA (ssDNA) binding protein that resolves secondary structure in ssDNA 

(reviewed in [48]), while RecJ is a conserved exonuclease that degrades ssDNA [49].  Both 

proteins have roles in homologous recombination and mismatch repair [48, 50, 51].  A 

recent report has demonstrated that binding of ssDNA by SSB enhances RecJ binding and 

exonuclease activity [52] suggesting a functional relationship between the two proteins.  

This is further supported by the binary protein-protein interaction that we have detected in 

C. jejuni (this study) and the purification of an E. coli protein complex containing RecJ 

using affinity-tagged SSB [1].  

 

The many uncharacterized proteins in the essential protein network are potentially 

biologically important and may include potential novel drug targets.  For example Figure 

8, Box B highlights a protein of unknown function, Cj0189c, which has interaction 

partners with 5 ribosomal proteins.  Based on this and the fact that proteins with related 

functions tend to interact, it is reasonable to hypothesize that Cj0189c may also be 

involved in ribosome assembly or function.  This is potentially significant given that the 

ribosome and protein synthesis are frequent targets of antibiotics [53].  Box C highlights 

the uncharacterized protein Cj0980, which is homologous to the dipeptidase, peptidase D.  

In E. coli Peptidase D is one of the enzymes that generates cysteine by cleaving 
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cysteinylglycine [54].  In our map Cj0980 interacts with nine proteins predicted to be 

essential.  One of these proteins, Cj0240c, is a homolog of IscS, a cysteine desulfurase 

required for the synthesis of all tRNA thiolated nucleosides in E. coli [55].  Interestingly, 

four additional interactors of Cj0980 are tRNA synthetases.  Whether or not their product 

tRNAs are modified in C. jejuni has not been determined, but this series of interactions 

suggests a possible pathway or protein complex that mediates the transfer of a thiol group 

originating from cysteinylglycine to specific tRNAs. 

 

Discussion 

The large-scale interaction studies performed to date have fallen short of complete 

interactome coverage.  The most complete large-scale yeast two-hybrid screens have 

covered only around 54% of the proteome in Drosophila [22, 25, 56], 46% in Helicobacter 

pylori [11] and 55% in yeast [57-59], while Co-AP/MS studies have reached 80% and 67% 

of the E. coli and yeast proteomes respectively [1-6] (Additional data file 1). Complete 

interactome coverage should include most of the proteome, since most proteins are 

believed to function at least in part through interactions with other proteins.  A major 

factor contributing to incomplete coverage is the incomplete nature of the high-throughput 

screens, as indicated by the minimal rate of overlap observed between independent large-

scale screens (Additional data file 1) [22, 59].  Thus despite the usefulness of the data from 

various interaction mapping efforts, the low interactome coverage is likely to limit efforts 

to predict protein functions, map pathways, and characterize protein networks.  Low 

coverage also limits the opportunity for cross validation, which is particularly important 

for high throughout data sets because they tend to have high rates of false positives [24, 

60]. 

 

We have made substantial progress towards defining the C. jejuni interactome.  Based on 

the number of ORFs included in the interaction dataset we have covered 80% of the 

proteome, and our higher confidence dataset covered 67%.  An expected consequence of 

performing high-throughput screens, which tend to be subsaturating, is that some 

interactions that are detectable by two-hybrid are missed [10].  We set out to minimize 

these false negatives by using a highly sensitive two-hybrid system, inducible promoters to 
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detect interactions with toxic proteins and transcriptional activators, and a pooled-matrix 

mating scheme to maximize the number of interactions sampled. Despite these efforts, 

some interactions will be missed, especially those that are refractory to standard two-

hybrid assays.  Detection of these will require other technologies, such as isolation and 

identification of protein complexes, and assays that target specific classes of proteins such 

as membrane proteins [61, 62].  Interaction networks may also be made more complete by 

using computational approaches to predict missed interactions [34, 35].  In this study we 

applied a comparative algorithm to align protein networks from C. jejuni to the 

interactomes of other species to generate further predictions of protein interactions.  Like 

the high throughput experimental data, these predictions provide a guide for directed 

validation studies. 

 

An unfortunate side effect of large-scale protein interaction datasets is the presence of 

significant numbers of false positive interactions.  We addressed this problem in two ways. 

First, we retested every interaction in a second independent two-hybrid assay.  Second, we 

calculated probability scores that correlate with the likelihood that an interaction is 

biologically relevant.  One advantage to this confidence scoring system is that it scores 

interactions rather than proteins and therefore does not specifically delete any proteins.  

Several studies including ours have found an inverse correlation between the biological 

significance of an interaction and the total number of interactions for the two proteins 

involved; the more interactions that a protein has, the less likely they are to be biological 

true positives.  One approach to increasing the overall confidence of a data set, therefore, is 

to delete these “sticky” proteins.  In contrast, it is possible to identify biologically relevant 

interactions involving these proteins by using a statistical scoring system that weighs 

multiple attributes according to their correlation with biological significance. With such a 

scoring system an interaction may be penalized because it involves a sticky protein, but 

redeemed due to some other attribute.  This is the case, for example, in our data with the 

interactions FliS-FlaC, GroEL-GroES, Ilvl-IlvH, PyrB-PyrC2, and TrxA-TrxB, all of 

which involve proteins with more than 60 interactions, yet have confidence scores above 

0.8, and are likely to be biologically significant. 
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Another advantage to this scoring system is that it allows user-defined confidence intervals 

to be chosen based on particular analysis needs.  Global analyses, for example, may benefit 

from using the highest confidence data set.  More focused analyses involving one or few 

proteins, on the other hand, may tolerate lower confidence interactions because validation 

experiments can be performed.  This reduces the chances of missed interactions.  

Importantly, some low confidence interactions may be found to be biologically significant 

by experimental validation or by considering additional information not used in the scoring 

system.  For example, by considering pairs of proteins with known functions, one can find 

a number of likely true positives with confidence scores below 0.2, including DnaX-DnaN, 

ExbD1-ExbD3, and FabF-FabG. 

 

Finally, the confidence that we have in any particular interaction can change as new data 

becomes available about the two proteins or about the interaction itself.  We have shown 

that the scores we assigned to the C. jejuni two-hybrid data correlate with biological 

significance such that more of the interactions with higher scores will be biologically 

significant than those with lower scores, and vice versa.  Nevertheless, a fraction of the low 

confidence interactions are true positives and some of the high confidence interactions are 

false positives.  It is expected that these will be sorted out using new, increasingly accurate 

confidence scoring systems that are based, for example, on new information as it becomes 

available.  Thus, we have defined the scoring of the C. jejuni two-hybrid data presented 

here as version 1.0. 

 

Conclusions 

Interactome maps such as the one generated in our study begin to provide a tally of the 

binary protein interactions that can occur within an organism.  Although incomplete, the 

data can provide a framework for understanding dynamic biological processes, such as the 

C. jejuni chemotaxis response.  The map also can be mined for subnetworks of biological 

interest such as essential gene networks that suggest candidate drug targets.  Comparative 

analyses of protein interaction maps generated for humans and model eukaryotes have 

provided insights into the function and evolution of proteins and their regulatory networks.  

The protein interactions detected for each species also have enabled the prediction of 
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interactions in other species, which is particularly important given the difficulty of 

obtaining complete coverage in high throughput screens, and the lack of suitable screening 

systems for many species.  The C. jejuni interaction map generated here substantially 

increases the protein interactions detected thus far for the prokaryotic domain of life.  The 

map should provide a useful starting point for predicting the functions of uncharacterized 

proteins and for mapping functional pathways in C. jejuni and other prokaryotes. 

 

 

 

Materials and Methods 

Strains and Plasmids.   

The two-hybrid system used here is based on the version originally described by Brent and 

colleagues [63].  C. jejuni ORFs were cloned into the yeast two-hybrid vector pJZ4-NRT 

for expression of activation domain (AD) fusions driven by the yeast GAL1 promoter [22], 

and pHZ5-NRT for expression of LexA DNA binding domain (BD) fusions driven by the 

yeast MAL62 promoter [23].  Both vectors contain recombination tags for direct cloning of 

tagged inserts (see below).  Yeast strain RFY231 (MATα trp1∆::hisG his3 ura3-1 

leu2::3LexAop-LEU2) contained the AD plasmids, while Y309 (MATa trp1∆::hisG 

his3∆200 leu2-3 lys2∆201 ura3-52 mal- pSH18-34(URA3, lacZ)) contained the BD 

plasmids.  The reporter genes include LEU2 facilitating growth on medium lacking 

leucine, and lacZ, expression of which turns yeast colonies blue when the substrate X-Gal 

is present. 

 

Generation of yeast two-hybrid arrays for C. jejuni.   

PCR amplification of over 87% of the predicted ORFs from C. jejuni NCTC11168 

genomic DNA was previously described [64].  The amplification products included the 21 

bp recombination tags 5RT1 and 3RT1 at their 5’ and 3’ ends, respectively, which match 

identical sites flanking the insertion site in the yeast two-hybrid vectors.  PCR products 

were cloned into the vectors via homologous recombination in yeast as described 

previously [22].  To validate the identity of the insert in each vector, the 5’ ends of the 

inserted PCR products were sequenced.  1398 BD strains and 1442 AD strains containing 

the two-hybrid vectors with inserts were generated of which 90% have been sequence 
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verified.  Most of the ORFs missing from the arrays failed PCR amplification prior to 

cloning. 

 

High-throughput yeast two-hybrid analysis.   

We mated BD and AD strains using a two-phase pooling (pooled matrix) strategy as 

described previously [21, 22].  Briefly, 15 pools of approximately 96 AD strains each were 

generated, along with one additional pool of 32 strains.  Each pool was mated with 

individual BD strains arrayed on 96-well plates, and the resulting diploids were assayed for 

reporter activities.  Positive BD strains were then mated with each member of the positive 

AD pool arrayed on 96-well plates to identify the interacting pairs.  Reporter activities 

were scored using a custom program for image analysis [65] and at least one manual 

scoring.  LacZ scores ranged from 0 (white) to 5 (dark blue) and Leu scores ranged from 0 

(no growth) to 3 (heavy growth); combined scores ranged from 0 to 8.  Many BDs have 

some level of background activity due to activation independent of the AD fusion or non-

specific interactions.  To correct for these we calculated the average interaction score for 

each BD based on at least 96 interaction assays and subtracted this background from the 

reporter scores for each of its interactions.  Of these corrected scores, only those >= 1 were 

considered initial positives and were retested (see below).  A small subset of BD strains 

(94 total) was also assayed using a library approach as described [21, 22].  Briefly, BD 

strains were individually mated with a single pool containing almost all of the AD strains 

(except Cj1718c (leuB) and Cj1546, which activate reporters without a BD).  Up to 30 

diploids with reporter activity were picked for each BD.  Their AD inserts were PCR 

amplified and restriction digested to identify strains carrying the same clones.  Single 

representatives from each restriction fragment class (RFC) were then sequenced to identify 

the inserts.  Of the 134 interactions detected, 52 (39%) were also identified in the two-

phase matrix screen.  Combined, 16,104 unique interactions were retested in one-on-one 

binary mating assays between individual AD and BD strains on 96-well plates.  A total of 

11,687 interactions proved repeatable (background-corrected combined activity score >= 

1) including 73% of those from the two-phase matrix screen, 75% of those from the library 

screen, and 100% of those detected in both screens. The majority of interactions that failed 

to repeat had been low-scoring (less than 2) in the initial screen. The 11,687 interactions 
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that repeated were combined with 325 non-repeated interactions that had high confidence 

scores (see below) to create a data set containing 12,012 interactions, which we named 

CampyYTH v3.1.  This version of the dataset was subsequently used for bioinformatics 

analysis as indicated.  The interaction data can be visualized and downloaded at [17].  The 

CampyYTH v3.1 data is also listed in Additional data file 13. 

 

Assignment of confidence scores  

Confidence scores were determined for each interaction based on methods described by 

Bader et al. [24, 25].  We fit a generalized linear model [66] using experimental and 

topological attributes of yeast two-hybrid interactions, including the number of interactions 

for each protein in a pair and the Leu and lacZ reporter activities  Fitting the model 

required both positive and negative training sets.  Because a reference set of known 

interactions is not available for C. jejuni, we derived a set of positive training data (85 

interactions total) by assuming that the conserved interactions (reciprocal best match 

interologs) in common with either the E. coli low-throughput interaction set [28], the H. 

pylori yeast two-hybrid set [11], or the E. coli protein complex set [1] are likely to be true 

positives.  We derived a set of likely true negatives (111 total) for the negative training 

data by considering interactions between proteins whose orthologs in E. coli or H. pylori 

were separated in the respective interaction maps by greater than the average distance of all 

pairs (>= 4).  Positive and negative training cases were weighted inversely to the number 

of interactions in each set. When training sets are weighted this way, a confidence score 

greater than 0.5 means that available data and features support that a specific interaction 

has a better than random chance to be a true interaction; this allows 0.5 to be used as the 

threshold between high and low confidence interactions.  Validation using protein features 

not used in the scoring system support the choice of 0.5 as a threshold for higher 

confidence interactions (discussed further in Additional data file 14; see also Figure 2c). Of 

the attributes tested, the numbers of interactions per protein were found to be negative 

predictors of biologically relevant interactions, while reporter activities were positive 

predictors. To evaluate the scoring model, we performed a stratified five-fold cross 

validation. Cross validation reported a precision of 91.4% and a recall of 78.9%, which 

gave us confidence that it is a reasonably well-fitted model.  We then used the full sets of 
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positives and negatives in training and obtained our final logistic model.  The final model 

was used to compute confidence scores for 16,104 initial positive interactions prior to 

retesting.  Of these, 3,209 scored higher than 0.5, which we define as the High Confidence 

Set (HCS).  Of the interactions with high confidence scores (>0.5), 90% corresponded to 

interactions that repeated when retested, while only 68% of the low confidence interactions 

repeated.  Further discussion and details of the confidence scoring system are available in 

Additional data file 14.  

 

Evaluating the confidence score model.  

Main role annotations ‘mainrole’ were downloaded from [67].  Excluding self-interactions, 

out of the 3209 high confidence interactions, 2599 have ‘mainrole’ annotations, and 454 

share at least one ‘mainrole’ annotation.  We generated 5000 groups of 2599 randomly 

selected interactions that have ‘mainrole’ annotations and have a confidence score lower 

than 0.5.  The number of pairs in each set that share ‘mainrole’ annotations was counted.  

The distribution was plotted in a histogram and compared with the high confidence set 

(Figure 2b).  To examine whether high confidence interactions tend to share more detailed 

GO [27] annotations, we grouped interactions into confidence bins so that each bin 

contains only interactions with scores falling into a specific range. For each interaction, we 

determined the deepest level of GO biological process annotations shared by the pair of 

genes, and calculated the average depth of shared biological process for each group. Since 

GO ontology for C. jejuni NCTC11168 was not available, we used annotations for best 

match orthologs of C. jejuni RM1221 genes [68].  Figure 2c shows that there is a general 

pattern of increased depth of shared GO terms for interactions with confidence score 

higher than 0.5. This fact also suggests that our choice of 0.5 as a high confidence 

threshold is meaningful.   

 

Assessment of functional enrichments 

The frequency of each Gene Ontology (GO) description from the iProClass database [69], 

amongst all of the proteins comprising the proteome was determined and compared to their 

frequency within the CampyYTH v3.1 dataset or the high confidence subset (Additional 

data file 3).  A similar analysis was performed using the functional classifications assigned 
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by the Sanger Institute [26] (Additional data file 2).  We also looked for pairs of GO 

annotations that were enriched in the interaction data (Additional data file 10). To do this 

we counted the number of interactions having a specific pair of GO terms.  We mapped the 

annotations to level 5; that is, for a protein with GO annotation A that is at a deeper level 

than 5, we mapped A to level 5 using ‘parent’ and ‘part of’ relationships in the ontologies, 

and we discarded A if it was above level 5.  Self-interactions were excluded from the 

analysis.  We did the same for all GO terms annotated to a protein.   To compute the 

significance of finding specific GO pairs, we generated 2000 random networks by 

randomly switching pairs of links while maintaining the degree distribution of the original 

map, and counted the number of times we found each GO pair in each randomized 

network. For each GO pair, a p-value was computed based on the distribution of the 2000 

counts (assuming normal distribution) and the count in the original yeast two hybrid map. 

The p-value represents the probability of seeing such a pair in a random network. We listed 

only pairs with a p-value less than 5%.  

 

Comparative network analysis 

Additional details are in Additional file 14.  Protein-protein interactions from C. jejuni 

were compared with those from E. coli [1]; H. pylori [11]; and S. cerevisiae from the 

Database of Interacting Proteins [28].  Corresponding protein sequences were obtained 

from the following sources: C. jejuni NCTC11168 [26]; E. coli [70]; H. pylori [71]; and S. 

cerevisiae [72].  We used NetworkBlast to identify significant conserved protein-protein 

interaction subnetworks [34].  A stand-alone Java version of the program is available at 

[73].  Briefly, the algorithm takes as input a pair of protein-protein interaction networks, 

one for each of two species, along with a set of homology relationships between the 

proteins of the two networks.  We constructed the homology relationships from an all-

versus-all BLAST of the complete set of protein sequences for each of the two species, 

taking the top 10 hits with E-value <= 10
-10

.  Next, a network alignment graph was created 

where each node represents a homologous pair of proteins from species 1 and 2 (e.g., a1 

and a2) and each edge represents a conserved interaction (a1/a2 connects to b1/b2 if the a-

b interaction is found in both species; interactions may be either direct (distance 1) or 

indirect (distance 2), in which a-b is connected through a common neighbor, i.e., a-c-b).  A 
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greedy search is initiated from each node to identify conserved protein subnetworks, 

defined as dense subgraphs within the network alignment graph (of maximum size 15 

proteins per species).  When multiple subnetworks contain protein homologs that overlap 

by >=50%, only the complex with the highest density was included in the final result. GO 

annotations [27] of proteins in each conserved complex were analyzed to identify 

significant functional enrichments (Additional data file 6). We calculated a hypergeometric 

p-value of enrichment for each GO annotation in the three divisions of the GO hierarchy 

and constrained the annotations by requiring that at least half of the proteins in a complex 

ascribe to the enrichment.  The most specific annotations with hypergeometric p-value < 

0.05 in each of the three divisions were then assigned to each complex.  A complete list of 

conserved complexes between C. jejuni and E. coli or S. cerevisiae is available for 

download at [73].  The significant conserved subnetworks provided predictions of 379 new 

C. jejuni protein-protein interactions not found in the two-hybrid screens (Additional data 

file 7).  A protein pair (a,b) was predicted to interact directly if: 1., both a and b were 

present in the same significant conserved complex; 2., this pair was observed to interact 

indirectly in C. jejuni; and 3., this pair corresponded to a direct interaction in the 

comparison species’ network.  

 

Clustering of conserved subnetworks   

Since proteins can belong to more than one complex, we clustered the significant 

conserved subnetworks by protein membership, in effect ‘superclustering’ the interactions 

(Figure 5b).  An n×m matrix was constructed, where n is the number of significant 

subnetworks and m is the number of unique proteins involved in any of the significant 

subnetworks.  Using the open source tool ClustArray [74], we clustered the proteins 

hierarchically using the unweighted pair group method with arithmetic mean  (UPGMA) 

and clustered the subnetworks with a combination k-means algorithm followed by 

UPGMA hierarchical clustering.  The number of clusters k=3 was chosen as the parameter 

that approximately minimized within-cluster variability and maximized between-cluster 

variability (data not shown).  Identities of complexes and proteins are shown in the high 

resolution image of the hierarchical clustering in Additional data file 8.  Lists of the 

proteins comprising complexes are available for download at [73]. 
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Essential gene analysis and network assembly  

We generated lists of putative C. jejuni NCTC11168 essential proteins by identifying 

reciprocal best match orthologs of likely essential proteins from B. subtilis [75] and E. coli 

[76].  We removed genes from our putative essential list if viable null mutants have been 

reported (Dr. B. Wren, personal communication).  To examine the relationship between 

essentiality and centrality in the interaction map, we computed the numbers of essential 

and non-essential proteins in groups having the same number of interactions (degree) in the 

higher confidence data set (interactions with confidence scores >0.5). The result is shown 

in Figure 7, where r values in the graphs represent Pearson correlation coefficient between 

the fractions and the degrees. Figure 7 shows that there is a correlation between degree of 

proteins and the likelihood of being essential.  A similar result was obtained with the entire 

dataset CampyYTH v3.1 (not shown).  Lastly, we computed the fraction of essential and 

non-essential neighbors of each essential protein and compared this to the fraction for 

random groups of proteins (of the same size as the set of essential proteins). The results 

shown in Additional data file 11 indicate that essential genes tend to have more neighbors 

that are also essential. p-values indicate the probability of seeing the real fraction (the red 

dot) by chance. 

 

Additional Data Files 

The following additional data are available with the online version of this paper. 

Additional data file 1 is a table summarizing proteome coverage from large-scale 

interaction screens.  Additional data file 2 is a table listing the representation of functional 

categories amongst the proteins in the CampyYTH v3.1 dataset. Additional data file 3 is a 

table listing the Gene Ontology (GO) category representation amongst the proteins in 

CampyYTH v3.1. Additional data file 4 lists C. jejuni genes that were toxic or inhibitory to 

yeast growth. Additional data file 5 is a table comparing network features across 

organisms.  Additional data file 6 lists conserved subnetworks between C. jejuni and E. 

coli or C. jejuni and yeast.  Additional data file 7 lists predicted C. jejuni protein 

interactions.  Additional data file 8 is a higher resolution version of Figure 5, showing 

hierarchical clustering of conserved subnetworks.  Additional data file 9 is a table listing 
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enriched functions within the cores and modules of Figure 5. Additional data file 10 is a 

table showing gene ontology enrichment amongst the C. jejuni protein interactions.  

Additional data file 11 is a figure showing that essential proteins interact with each other 

more often than expected by chance.  Additional data file 12 is a table of C. jejuni 

interologs predicted from large-scale protein interaction analyses performed for E. coli or 

H. pylori. Additional data file 13 is an annotated list of all C. jejuni protein interactions in 

the CampyYTH v3.1 dataset. Additional data file 14 includes supplementary materials and 

methods.  
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Figure Legends 

 
Figure 1 
C. jejuni protein interaction networks.  (a) The C. jejuni interaction dataset (CampyYTH 

v3.1), and (b) the higher confidence subset.  In each case most of the proteins (square 

nodes) are connected into a single large network; the unconnected interactions are in the 

upper right of each panel.  The networks in (a) and (b) connect over 79% (663 total) and 

65% (548 total) of the unnamed and presumed poorly characterized proteins (yellow 

nodes), respectively.  

 

 

Figure 2 
Confidence scores assigned to the C. jejuni protein interactions. (a) The distribution of 

confidence scores generated for the CampyYTH v3.1 protein interactions are shown in red.  

The distributions of scores for the training sets containing likely true positives (green) or 

true negatives (black) are also shown.  (b) Protein interaction pairs with high confidence 

scores (HCS; confidence scores >0.5) share the same functions significantly more 

frequently (p-value < 3*10
-57

) than protein pairs comprising interactions with low 

confidence scores (LCS; confidence scores <=0.5).  Protein “self” interactions were 

excluded from the analysis. (c) The average depth of shared Gene Ontology biological 

process annotation was determined for the interactions comprising each confidence score 

bin.  Higher confidence interactions generally involve proteins with the same functional 

annotation at greater depths of precision. The two dotted line segments are linearly fitted 

lines between average GO depth and bin number in two regions, from 0.5 to 0.9 and 0.9 to 

1.0.  Protein “self” interactions were excluded from the analysis. 

 

Figure 3 
Comparison of the C. jejuni interaction map with other datasets.  The interactions found in 

common, or overlap (red dots) between the C. jejuni two-hybrid map and interologs 

predicted from other organisms was determined.  This was compared to the overlap 

between the interolog datasets and 2,000 random maps generated by randomly switching 

pairs of links in the original yeast two-hybrid map; which preserves network degree 

distribution.  (a) The two-hybrid map shared 28 interactions with a reference set containing 

147 interologs of E. coli low-throughput literature-cited protein interactions, significantly 

greater than the overlap with the random maps. (b) 50 C. jejuni interactions were shared 

with 1165 interologs predicted from the H. pylori protein interaction dataset [11]. (c) 124 

interactions were shared with a set of 3743 interologs predicted from a large-scale E. coli 

protein complex study [1].   (d) 76 interactions were shared with a set of 4056 interologs 

predicted from a second E. coli protein complex pull-down study [6].  A complete list of 

the predicted interologs used for these analyses can be found in Additional data file 12. 

 

 

Figure 4 
Characteristics of the C. jejuni protein network. (a) Degree frequency distribution for the 

entire two-hybrid data set (CampyYTH v3.1).  k = degree, the number of connections to a 

protein.  P(k) = the probability that a node has k connections.  A power law fit yields: y = 
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0.4153 x
-1.29

; R
2
 = 0.88.   (b) Degree frequency distribution for the high confidence dataset 

(confidence scores > 0.5).  A power law fit yields: y = 482.2 x
-1.53

, R
2
 = 0.89.  (c) Rank-

degree distribution for the entire two-hybrid data set.  The semi-log plot more closely fits 

an exponential curve (red line, R
2
 = 0.97) than a power law curve (black line, R

2
 = 0.81.  

(d) Rank-degree distribution for the high confidence data.  The semi-log plot more closely 

fits a power law curve (black line, R
2
 = 0.91) consistent with a scale-free network.  (e) (f) 

The distribution of the average clustering coefficient (C) for degree k for the entire two-

hybrid data set (e) and the high confidence set (f).  C is equal to the number of interactions 

among a protein’s interactors as a fraction of all possible interactions.  (g) Frequency of 

pathlength (the shortest distance in interactions between two nodes) for the entire data set.  

(h) Frequency of pathlength for the high confidence data. 

 

 

Figure 5   
Identification of conserved core subnetworks. (a) Representative examples of subnetworks 

conserved between two organisms. C. jejuni subnetworks are on the left. The top and 

middle subnetworks (#142 and #307 in Additional data file 6) are conserved with E. coli.  

The bottom subnetwork (# 56) is conserved with yeast S. cerevisiae.   Bold lines represent 

direct interactions, whereas thin lines represent indirect interactions that are direct in the 

comparison organism (i.e., these are predicted interactions).  Gene names can be read by 

zooming in.  A complete list of conserved subnetworks between E. coli and S. cerevisiae is 

available for download at [73]. (b) Hierarchical clustering of the conserved subnetworks.  

In the clustergram, rows represent proteins and columns represent C. jejuni subnetworks 

that are conserved with either yeast (left) or E. coli (right).  Cores (boxed in red) and 

modules (boxed in blue) are defined as groups of proteins with similar profiles of 

subnetwork membership.  The cores and modules are enriched for specific functions.  For 

example, Core 1: Serine family amino acid metabolism; Module 1-1: serine family amino 

acid biosynthesis; Module 1-2: generation of precursor metabolites and energy; Module 1-

3: oxygen and reactive oxygen species metabolism.  A larger version of this figure 

including complex and protein names (Additional data file 8) and a list of function 

enrichments (Additional data file 9) are available in Additional data files. 

 

 

Figure 6 
Identification of the C. jejuni motility protein network. (a) The subset of high confidence 

interactions involving all proteins annotated [26] as having roles in motility.  Only six 

small networks fall outside of the single large network.  Protein colors are as follows: blue, 

putative chemotaxis proteins; red, putative methyl-accepting chemotaxis proteins (MCP); 

green, putative flagellar/motility proteins; and yellow, proteins not annotated as motility-

related.  The box highlights CheA and its interactors including Cj0643 (see text).  Gene 

names can be read by zooming in.  (b) A subsection of the motility network highlighting 

the proteins in the canonical chemotaxis signal transduction pathway (MCP, CheW, CheA, 

CheY, and FliM) and their interactors.  Proteins are colored as in (a), above. To improve 

visibility of interactions comprising the chemotaxis backbone, nodes not previously 

identified as related to chemotaxis or motility (yellow) were removed if they connected to 

only one red, blue, or green node.  
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Figure 7. 

Fraction of putative C. jejuni essential genes among genes of the same degree.  C. jejuni 

genes in the higher confidence interaction map (confidence score >0.5) were collected into 

different groups according to their degrees (number of interacting partners).  For each 

degree group the fraction of putative essential genes was computed and plotted as shown.  

Solid lines in the graphs were fitted using the available data points.  The r values represent 

Pearson correlation coefficients between fractions of putative essential genes and their 

degrees. (a) Putative C. jejuni essential genes are orthologs of E. coli genes identified as 

essential by Baba et al., [76]. (b) Putative C. jejuni essential genes are orthologs of B. 

subtilits genes identified as essential by Kobayashi et al., [75]. (c) Putative C. jejuni 

essential genes are the intersection of genes predicted to be essential from the E. coli and 

B. subtilis sets.  (d) Putative C. jejuni essential genes are the union of the E. coli and B. 

subtilis sets. 

 

Figure 8 
A C. jejuni network enriched for putative essential proteins.  The network contains C. 

jejuni orthologs of genes proposed to be essential in E. coli (triangles), B. subtilis 

(diamond), or in both organisms (rectangles).  Additional proteins (circles) were included 

only if they interacted with more than one of the putative essential proteins.  All of the 

protein interactions shown have confidence scores >0.5.  The map contains 264 proteins 

and 480 interactions.  Proteins are colored based on their functional classification [26]; red, 

ribosomal protein synthesis and modification; blue, DNA replication, 

restriction/modification, recombination and repair; green, cell envelope; turquoise, 

aminoacyl tRNA synthetase and modification; orange, biosynthesis of amino acids and 

fatty acids; purple, energy and central intermediary metabolism; lavender, cofactor, 

prosthetic group and carrier biosynthesis; gray, purines, pyrimidines, nucleosides and 

nucleotide biosynthesis; brown, transcription and translation; yellow, hypothetical; pink, 

misc. Gene names can be read by zooming in.  
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Table 1.  Summary of array generation and interaction testing. 

ORFs total 1654 

ORFs cloned 1477 

 BD fusions 1398 

 AD fusions 1442 

Assays performed ~336,000 

Interactions
1
  11,687 

BD proteins 637 

AD proteins 1248 

Unique ORFs 1321 

Higher confidence 

interactions
1,2

 

2884 

BD proteins 589 

AD proteins 923 

Unique ORFs 1067 
1Interactions that repeated upon retesting. 
2An additional 325 interactions received high confidence scores (> 0.5),  

  but were not repeated in a second two-hybrid assay.  
 

 
Table 2. Comparison of C. jejuni, H. pylori, and E. coli protein interaction sets to an E. 

coli reference set containing 599 low-throughput literature-cited interactions
1
. 

 Ref. set 

interologs
2
 

 

Overlap with 

ref. set 

interologs 

Overlap (%) with total 

interactions detected 

for each study 

Fraction of proteins in 

each study with 

orthologs in the ref. set 

C. jejuni 147 28 (19%) 0.24   7.9% 
C. jejuni (HC) 147 27 (18%) 0.95   8.5% 
H. pylori

3
  84 10 (12%) 0.70   7.9% 

E. coli
4
  599 81 (14%) 1.32 11.2% 

E. coli
5
 599 49 (8%) 0.44 11.2% 

1Reference set was derived from DIP [28] 

2Interolog lists were generated separately for each organism based on BLASTP reciprocal best 

match determination of orthologs.   
3H. pylori interactions were detected by Rain et al. [11]  
4E. coli interactions were predicted from Butland et al. [1] 
5E. coli interactions were predicted from Arrifuzzaman et al. [6] 

 



(a) (b) 

Figure 1



 

(a) 

Pairs with Shared Main Role 

(b)  
Ran dom sets of L CS interactions  

0

200

400

600

200 300 400 500

HCSHC S 

Confidence 

(c)  

2

3

4

5

6

Confidence 

Figure 2



E. coli  reference set

overlap

F
re

q
u
e
n
c
y

0 10 20 30 40

0
3
0
0

6
0
0

p!value == 2.32 !! 10
""11

(a)

Interologs predicted from H. pylori

overlap

F
re

q
u
e
n
c
y

0 10 20 30 40 50 60

0
1
5
0

3
0
0

p!value == 2.16 !! 10
""55

(b)

Interologs predicted from E. coli  complexes

overlap

F
re

q
u
e
n
c
y

20 40 60 80 100 120 140

0
6
0

1
2
0

p!value == 3.12 !! 10
""47

(c)

Interologs predicted from E. coli  complexes

overlap

F
re

q
u
e
n
c
y

30 40 50 60 70 80 90 100

0
1
0
0

2
5
0

p!value == 5.96 !! 10
""4

(d)

Figure 3

Figure 3



 

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250

Degree (k)

0.0001

0.001

0.01

0.1

1

1 10 100 1000

Log [k]

R
2
 = 0.9674

R
2
 = 0.8111

0.1

1

10

100

1000

10000

0 50 100 150 200 250

Degree (k)

0.0010

0.0100

0.1000

1.0000

1 10 100 1000

Log (k)

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6

Pathlength

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150

Degree (k)

0.0001

0.001

0.01

0.1

1

1 10 100 1000

Log [k]

R
2
 = 0.7874

R
2

 = 0.9112

0.1

1

10

100

1000

10000

0 20 40 60 80 100 120

Degree (k)

(d) 

0.0001

0.001

0.01

0.1

1

1 10 100 1000

Log [k]

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9

Pathlength

(c) 

(a) (b) 

(e) (f) 

(g) (h) 

Figure 4



 

(a) (b) 

Figure 5



 

Cj0951c
Cj0262c

Cj1110c
Cj0448c

Cj0246c

CheVCheW

CheA

CheY

Pal

IamA

RpsJ

Cj1648

Cj1004

FlhF

Cj0649

FliM
FliY

FlaC FlgG2

Cj1190c

(b) 

(a) 

Figure 6



0 5 10 15 20 25 30

0
.1

0
.3

0
.5

E. coli

degree

e
s
s
e
n
ti
a
l 
g
e
n
e
 f

ra
c
ti
o
n

r=0.741

(a)

0 5 10 15 20 25 30

0
.1

0
.3

0
.5

B. subtilis

degree

e
s
s
e
n
ti
a
l 
g
e
n
e
 f

ra
c
ti
o
n

r=0.701

(b)

0 5 10 15 20 25 30

0
.1

0
.3

0
.5

E. coli  AND B. subtilis

degree

e
s
s
e
n
ti
a
l 
g
e
n
e
 f
ra

c
ti
o
n

r=0.765

(c)

0 5 10 15 20 25 30

0
.1

0
.3

0
.5

E. coli  OR B. subtilis

degree

e
s
s
e
n
ti
a
l 
g
e
n
e
 f
ra

c
ti
o
n

r=0.634

(d)

Figure 7

Figure 7



 

A 

B 

C 

R ib osom al  p r ote in  s y n th es is  an d  mod i fica ti o n  

DN A  r e p lica ti o n,  r es tric ti o n / mod i fica ti o n, 

r e c om b ina ti o n  an d  r e p air  

C e ll  e n v e lo p e  

A m in o ac y l  tRN A  s y n the ta se  and mod i fica ti o n  

B ios y n th es is  o f  a m in o  aci d s  an d f a tt y aci ds  

E n e r g y  an d c e n tral  in te r med iar y  met a b o li sm  

C of ac to r , p r o s th et i c  g r o u p , and  carri e r  

b i os y n th es i s  

P urin es,  p y ri m id in es,  nucl eos i de s , and  

nucl eot i de  b i os y n th es i s  

T ran s cri pt i o n  an d t ran s la ti o n  

H yp ot h et ical  

M i s c e llan eo u s  

Figure 8



Additional files provided with this submission:

Additional file 1: additional data file1.doc, 109K
http://genomebiology.com/imedia/1044524182143940/supp1.doc
Additional file 2: additional data file2.doc, 93K
http://genomebiology.com/imedia/1758688196143940/supp2.doc
Additional file 3: additional data file3.doc, 489K
http://genomebiology.com/imedia/9690706631439409/supp3.doc
Additional file 4: additional data file4.doc, 259K
http://genomebiology.com/imedia/9949176981439409/supp4.doc
Additional file 5: additional data file5.doc, 91K
http://genomebiology.com/imedia/2108952569143942/supp5.doc
Additional file 6: additional data file6.doc, 202K
http://genomebiology.com/imedia/1857446829143942/supp6.doc
Additional file 7: additional data file7.xls, 70K
http://genomebiology.com/imedia/5664509541481513/supp7.xls
Additional file 8: additional data file8.pdf, 226K
http://genomebiology.com/imedia/1624429514143942/supp8.pdf
Additional file 9: additional data file9.doc, 58K
http://genomebiology.com/imedia/2876435611439422/supp9.doc
Additional file 10: additional data file10.xls, 354K
http://genomebiology.com/imedia/2043143998143942/supp10.xls
Additional file 11: additional data file11.doc, 81K
http://genomebiology.com/imedia/1687877911143942/supp11.doc
Additional file 12: additional data file12.xls, 739K
http://genomebiology.com/imedia/4263355981439422/supp12.xls
Additional file 13: additional data file13.xls, 4881K
http://genomebiology.com/imedia/3915758471439422/supp13.xls
Additional file 14: additional data file14.doc, 95K
http://genomebiology.com/imedia/1767656161143942/supp14.doc

http://genomebiology.com/imedia/1044524182143940/supp1.doc
http://genomebiology.com/imedia/1758688196143940/supp2.doc
http://genomebiology.com/imedia/9690706631439409/supp3.doc
http://genomebiology.com/imedia/9949176981439409/supp4.doc
http://genomebiology.com/imedia/2108952569143942/supp5.doc
http://genomebiology.com/imedia/1857446829143942/supp6.doc
http://genomebiology.com/imedia/5664509541481513/supp7.xls
http://genomebiology.com/imedia/2876435611439422/supp9.doc
http://genomebiology.com/imedia/2043143998143942/supp10.xls
http://genomebiology.com/imedia/1687877911143942/supp11.doc
http://genomebiology.com/imedia/4263355981439422/supp12.xls
http://genomebiology.com/imedia/3915758471439422/supp13.xls
http://genomebiology.com/imedia/1767656161143942/supp14.doc

	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Additional files

