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Letter

Bayesian network analysis of targeting interactions
in chromatin
Bas van Steensel,1,3,4 Ulrich Braunschweig,1,3 Guillaume J. Filion,1 Menzies Chen,2

Joke G. van Bemmel,1 and Trey Ideker2,4

1Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; 2Departments of Medicine and

Bioengineering, University of California at San Diego, La Jolla, California 92093-0688, USA

In eukaryotes, many chromatin proteins together regulate gene expression. Chromatin proteins often direct the genomic
binding pattern of other chromatin proteins, for example, by recruitment or competition mechanisms. The network of
such targeting interactions in chromatin is complex and still poorly understood. Based on genome-wide binding maps, we
constructed a Bayesian network model of the targeting interactions among a broad set of 43 chromatin components in
Drosophila cells. This model predicts many novel functional relationships. For example, we found that the homologous
proteins HP1 and HP1C each target the heterochromatin protein HP3 to distinct sets of genes in a competitive manner. We
also discovered a central role for the remodeling factor Brahma in the targeting of several DNA-binding factors, including
GAGA factor, JRA, and SU(VAR)3-7. Our network model provides a global view of the targeting interplay among dozens
of chromatin components.

[Supplemental material is available online at http://www.genome.org. The microarray data from this study have been
submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession no. GSE15807.]

In the eukaryotic cell nucleus, hundreds of proteins interact di-
rectly or indirectly with DNA to form the chromatin fiber, which is
arguably the most intricate molecular complex in the cell. These
proteins together control genome-wide transcription patterns, as
well as other functions such as maintenance and replication of the
genome. Proteins in the chromatin fiber can be divided into three
major classes: (1) histones, which form nucleosomes that consti-
tute the basic packaging unit of chromatin; (2) DNA binding fac-
tors (DBFs), which typically recognize specific sequence motifs,
and (3) proteins that do not contact DNA directly, but interact
with DNA via other proteins, which we will refer to as chromatin
proteins.

Essentially all of these proteins show highly specific binding
patterns along the genome. Histones are the most abundant pro-
tein component of the chromatin fiber, but nevertheless display
some sequence preference (Kaplan et al. 2008) and show reduced
binding at the 59 ends of active genes (Rando and Ahmad 2007).
Histones carry a multitude of post-translational modifications,
many of which have specific location patterns along the genome
(Berger 2007; Rando 2007). DBFs generally show focal binding
patterns that are, to a large extent, dictated by the locations of their
recognition motifs in the genome, but also by the accessibility of
these motifs and by interactions with other proteins (Kim and Ren
2006; Morse 2007). The targeting of chromatin proteins is de-
termined by interactions with specific histone modifications,
DBFs, and other chromatin proteins. In turn, the location of his-
tone modifications is modulated by DBFs and chromatin proteins.
Thus, the genomic binding pattern of each chromatin component
may be determined by a multitude of interactions with other
components. How this highly complex network of interactions

leads to the formation of distinct types of chromatin at different
parts of the genome is still poorly understood.

In vivo genomic binding maps can provide important in-
sights into the signals that govern the genomic targeting speci-
ficity of a chromatin component (van Steensel 2005; Kim and Ren
2006). Comparison of the binding maps of multiple proteins can
be particularly informative. For example, if two proteins have
highly similar distributions along the genome, this may indicate
that the two proteins share a common targeting mechanism, or
that one protein recruits the other. Conversely, mutually exclusive
distributions suggest that the two proteins may be targeted by
different, incompatible mechanisms, or that one protein prevents
the other protein from binding.

Here, we describe a systematic search for targeting interactions
among a broad set of chromatin components. We define a target-
ing interaction X!Y as an interaction between two chromatin
components X and Y, such that the presence of X at a specific set of
genomic loci promotes the association of Y with these loci. Note
that this is a functional definition rather than a biochemical def-
inition; i.e., a targeting interaction does not necessarily require
a direct protein–protein interaction; it may also involve one or
more intermediate biochemical interactions or enzymatic activi-
ties. To map targeting interactions systematically, we analyzed a
broad compendium of in vivo genome-wide binding profiles
of a broad set of chromatin components in Drosophila. By com-
putational analyses and direct experimental evidence we demon-
strate the high overall reliability of the predicted network of
targeting interactions. We highlight several sets of interactions
that illustrate how the interplay between multiple proteins de-
termines their distribution along the genome. Specifically, we
uncover distinctmechanisms that determine the genomic binding
patterns of the heterochromatin components HP3 (also known as
LHR) and SU(VAR)3-7, and we demonstrate that the nucleosome
remodeling protein Brahma (BRM) has a central role in the tar-
geting of various DBFs. Finally, by analysis of the genes that
are bound by each chromatin protein we present evidence for
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compartmentalization of regulatory functions within the chro-
matin interaction network.

Results

A compendium of binding maps of chromatin components

We set out to identify candidate targeting interactions among
chromatin proteins by assembling a compendium of maps of 43
broadly selected chromatin components in Drosophila (Fig. 1). The
maps were generated by either chromatin immunoprecipitation
(ChIP) (Lieb 2003) or theDamIDmethod (Greil et al. 2006). The set
of maps was chosen to represent diverse classes of chromatin
components and it is currently the broadest collection of chroma-
tin profiles assembled in any eukaryote. The compendium includes
maps of six histone modifications and one histone variant (H3.3),
nine DBFs, and 26 chromatin proteins, such as classic heterochro-
matin proteins, Polycomb Group (PcG) proteins, nucleosome re-
modeling factors, highmobility group proteins, histonemodifying
enzymes, cofactors, and several other types (Table 1; Supplemental
Data Set 1). We also included a map of late replication timing
(LateRep) (Schübeler et al. 2002), which is an important attribute of
chromatin. While most maps were published previously, we gen-
erated additional DamID maps for six new proteins in order to
further increase the diversity of protein types (Table 1). All data
were generated in the Kc167 cell line, except for histone H3.3,
which was mapped in the closely related S2 cell line. All binding
profiles were detected using cDNA arrays, which report protein
associations at genes or in the flanking regions (;1 kb on either
side) (van Steensel et al. 2003). For 4380 genes, complete binding
data were available for each of the 43 chromatin components.
Hierarchical clustering of the genomic binding maps reveals simi-
larities and dissimilarities between the protein binding patterns
(Fig. 1). For example, HP1, HP3, HP4, HP5, HP6, and SU(VAR)3-9,

which are all known components of classic heterochromatin (de
Wit et al. 2007), show highly similar binding patterns (top six rows
in Fig. 1). Likewise, the Polycomb Group components PC, ESC,
SCE, and H3K27me3 cluster closely together.

Bayesian network inference of protein targeting interactions

Next, we employed the technique of Bayesian network inference
(BNI) (Pearl 1988; Cooper and Herskovits 1992; Friedman 2004;
Pe’er 2005) to build a detailed model of the targeting interactions
among all 43 chromatin components. BNI has two properties that
make it particularly useful for this purpose. First, it has the ability
to ‘‘explain away’’ indirect correlations. For example, if the pro-
teins B and C are independently recruited by protein A to a com-
mon set of target loci, then the binding maps of B and C will not
only correlate with A, but also with each other. The correlation
between B and C in this example does not reflect a functional in-
teraction between these two proteins, unlike the A–B and A–C
correlations. In BNI terminology, B and C are said to be condition-
ally independent given A. BNI models the conditional relationships
among all variables, resulting in a network model of the most
probable targeting interactions (i.e., the conditionally dependent
relationships).

Second, under certain assumptions (Friedman et al. 2000) BNI
models the most probable causality direction of interactions in the
network. In the context of our chromatin data, we interpret the
predicted causality direction as the most likely direction of a tar-
geting interaction between two chromatin components (e.g., it is
more likely that component X targets component Y than the in-
verse). Although such causality predictions should be interpreted
with caution (see Methods; Friedman et al. 2000), they provide
important guidance in the design of follow-up experiments (see
below). BNI has previously been used in biology to predict in-
teractions in gene and protein networks (Friedman 2004; Pe’er

Figure 1. Chromosomal maps of 43 chromatin components. Example showing the binding levels (log2 ratios transformed to Z-scores) of 43Drosophila
chromatin components along 300 genes in the proximal part of chromosome 2R. Rows were arranged by genome-wide hierarchical clustering, as shown
by the tree to the left of the binding data.
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2005; Missal et al. 2006; Djebbari and Quackenbush 2008;
Mukherjee and Speed 2008) and interactions among histone
modifications (Yu et al. 2008).

We constructed a BN using the compendium of 43 binding
profiles as input data. A previously described bootstrapping ap-
proach was used to compute confidence scores for each predicted
interaction (Friedman et al. 2000; Pe’er 2005) (Methods; Supple-
mental Data Set 2). The bootstrapping approach consists of the
construction of 1000 networks that are each based on randomly
picked subsets of array probes (i.e., genes). The frequency at which
a given edge occurs in these 1000 networks is taken as the confi-
dence score of this edge, which can range from 0% to 100%. Figure
2 shows the network of predicted interactions with confidence
scores $80%. We will refer to this network as BN80. As will be dis-
cussed below, we chose 80% as a cutoff because it yields a network
with high accuracy and sufficient coverage. In the graph repre-
sentation of the network, each chromatin component is shown as
a node, and edges between nodes indicate predicted targeting in-
teractions. An added value of BNI with bootstrapping is that it also
models the relative probability of the causality direction of the in-
teractions. This probability is reflected in the bootstrap score for
each direction and is indicated in Figure 2 by the sizes of the two
arrowheads of each edge. For example, the edge between Hairy (H)
andGroucho (GRO) strongly favors theH!GRO direction over the
opposite direction (95.3% vs. 0.45%), predicting that H affects the
targeting of GRO rather than the inverse (which is in agreement
with previous data; Paroush et al. 1994). As a contrasting example,
the LAM-SU(UR) edge has similar bootstrap scores for both di-
rections (47.0% and 52.7%), meaning that BNI predicts a targeting

interaction between the two proteins, but cannot resolve the cau-
sality based on the available data. In total, BN80 consists of 52 edges
among 40 nodes. Of these edges, nearly half (25) show a strong
directionality, with a greater than threefold higher bootstrap score
in one direction compared to the opposite direction.

Importantly, BN80 recapitulates many previously known
complexes and molecular associations (Fig. 2). For example, it
predicts targeting interactions that are in agreement with pre-
viously reported biochemical interactions, e.g., of MNT with both
SIN3A and MAX (Loo et al. 2005); SIN3A with RPD3 (Pile and
Wassarman 2000); H with both GRO (Paroush et al. 1994) and
CTBP (Poortinga et al. 1998); and heterochromatin protein HP1
with SU(VAR)3-9 (Schotta et al. 2002), HP3, and HP4 (Giot et al.
2003). The edge between Lamin (LAM) and LateRep is also striking,
given that late-replicating DNA is typically located near the nu-
clear lamina (Hiratani et al. 2008). Thus, many of the predicted
interactions are in agreement with previous studies, even though
the BNI was solely based on genome-wide binding profiles. The
proteins SU(HW), PARP, and TOP1 are the only three proteins not
connected in BN80. Each of these proteins has one or more con-
nections with boostrap scores of;70% (Supplemental Data Set 2),
i.e., below the 80% confidence cutoff. These interactions may be
of biological interest, but will be disregarded here.

Computational validation

Because very few targeting interactions have been studied so far
(particularly not genome-wide), no list of confirmed targeting in-
teractions is available that could be used as a ‘‘gold standard’’ to

estimate the performance of our BNI ap-
proach. We therefore used two public da-
tabases as surrogate reference lists. First,
we took the BioGRIDdatabase (Breitkreutz
et al. 2008), which is a compilation of
known physical and genetic interac-
tions. Although theDrosophila section of
this database is sparse—it only lists 17
interactions among the 43 chromatin
components—we found that BN80 recov-
ers seven of these 17 interactions (41%).
This is substantially more than expected
by random chance (random permutation
of nodes typically yields zero or one in-
teraction). In addition, BN80 predicts 46
interactions that are not in BioGRID. We
note that targeting interactions between
two proteins may also occur in the ab-
sence of known physical or genetic in-
teractions, or vice versa, and therefore one
may not expect a perfect correspondence
between BioGRID and BNI.

Second, we queried the PubMed
database for publications that mention
combinations of chromatin components
in their abstract or title (‘‘co-citations’’).
We found that 48% (25/52) of the
BN80-predicted interactions overlap with
PubMed co-citations (Supplemental Fig.
1). In contrast, among all pairs of the 43
chromatin components not linked by an
edge in BN80, only 13% have PubMed co-
citations, which demonstrates the highly

Figure 2. Bayesian Network model BN80 of the targeting interactions between 43 chromatin com-
ponents. Nodes represent chromatin components; edges represent predicted targeting interactions
with a bootstrap score (combined for both directions) of at least 80%. The size of each arrowhead is
proportional to the bootstrap score of the targeting interaction in the corresponding direction.

Network of targeting interactions in chromatin
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nonrandom nature of BN80. Obviously, co-citation of chromatin
components in PubMed is only a crude approximation of the ex-
istence of targeting interactions; however, given the large number
of possible pairs of components (903), manual curation of these
PubMed co-citations is not feasible. Lowering of the BNI bootstrap
confidence threshold increases the total number of predicted in-
teractions, but with a larger percentage of interactions not listed in
the public databases (Supplemental Figs. 1, 2), and therefore may
result in a lower overall accuracy. Taken together, these analyses
indicate that BN80 predicts a large number of biologically relevant
interactions, about half of which involve pairs of proteins that
have been previously linked according to a variety of biochemical
or functional assays, and the other half being completely novel.

Experimental validation strategy

An X!Y targeting interaction can be experimentally validated by
monitoring the binding pattern of component Yafter knockdown
or deletion of component X: If the loss of X causes a specific re-
duction of the binding of Y at the original target genes of X, then
the targeting interaction is (by definition) confirmed. According to
these criteria we confirmed several of the novel interactions ex-
perimentally, as described below.

Competitive targeting of HP3 by HP1 and HP1C

First, we considered the predicted targeting interactions in the
dense cluster of classic heterochromatin proteins centered around
HP1 in BN80 (Fig. 2). One such protein is HP3, a recently discovered
heterochromatin component that is thought to play a role in
Drosophila speciation (Brideau et al. 2006; de Wit et al. 2007). The
HP1!HP3 edge predicted that HP1 mediates targeting of HP3,
which is consistentwith the reported physical interaction between
the two proteins (Giot et al. 2003; Brideau et al. 2006). Reanalysis
of previously published data (Greil et al. 2007) shows that HP3 is
indeed selectively lost from the original HP1 target genes after HP1
depletion (Fig. 3A), but not from HP1 nontarget genes. This con-
firms that the HP1!HP3 edge represents a bona fide targeting
interaction.

Interestingly, BN80 predicts that HP3 is also targeted byHP1C,
which is a homolog of HP1. The genomic binding patterns of
HP1C and HP1 are essentially nonoverlapping (only ;5% of their
target genes are shared), suggesting that the two proteins may
compete for HP3 interaction. Indeed, depletion of HP1 causes HP3
to shift toward HP1C target genes (Fig. 3A), strongly supporting
this competition model.

We also analyzed the predicted HP1!HP6 interaction. Again,
this targeting interaction was confirmed by a specific loss of HP6
fromHP1 target genes upon depletion of HP1 (Fig. 3B). Unlike HP3
however, HP6 does not relocate significantly to HP1C target genes,
in agreement with the lack of an edge between the HP6 and HP1C
nodes. Taken together, BN80 correctly predicts two targeting in-
teractions involvingHP1, and identifies a competitionmechanism
involving HP1!HP3 and HP1C!HP3 interactions, the balance
of which determines the distribution of HP3 along the genome
(Fig. 3C).

BRM targets several DBFs

With six edges, the nucleosome remodeling protein Brahma (BRM)
is the most highly connected node in BN80, suggesting a central
role in the network. Interestingly, five of the six BRM-linked pro-
teins are known or predicted to contact DNA directly [JRA, GAF,

MBD-like, SU(VAR)3-7, histone H3.3] (Jaquet et al. 2002; Marhold
et al. 2004). For each of these five proteins the edge is strongly
oriented away from BRM, predicting that BRM is necessary for the
targeting of theseDNA-bindingproteins.We experimentally tested
this prediction for JRA, GAF, and SU(VAR)3-7. As a negative control
we also tested HP1, which is not linked to BRM in BN80. The results
of these experiments show that depletion of BRM causes a re-
duction in the binding levels of all three proteins at BRM target
genes, but not at other genes (Fig. 4A–D; Supplemental Data Set 3),
confirming that BRM is needed for their correct targeting. This
effect of BRM is specific, because HP1 shows no detectable change
in its binding levels at BRM target genes after knockdown of BRM
(Fig. 4E).

SU(VAR)3-7 is located in both euchromatin and pericentric
heterochromatin of polytene chromosomes. The targeting to these
different regions requires different protein domains in SU(VAR)3-7,
strongly suggesting two distinct molecular mechanisms (Jaquet
et al. 2002). Consistent with the exclusively euchromatic localiza-
tion of BRM (Armstrong et al. 2002) we find that BRM only con-
tributes to the targeting of SU(VAR)3-7 to euchromatic genes
and not to heterochromatic genes, as after knockdown of BRM
SU(VAR)3-7 association does not change at targets it shares with
HP1 (Fig. 4F). The targetingmechanismof SU(VAR)3-7 to pericentric

Figure 3. Experimental validation of predicted HP3 and HP6 target-
ing interactions. Density plots (‘‘smoothed histograms’’) showing the
changes in binding levels of HP3 (A) and HP6 (B) after RNAi knockdown of
HP1, compared to a control knockdown. Changes in binding are shown
for subsets of genes as indicated. The y-axes show relative frequency (plots
in each panel are normalized to have the same surface area). Binding data
after knockdown are from (Greil et al. 2007). Nontargets are bound by
neither HP1 nor HP1C. P-values are according to two-sided Wilcoxon
tests. (C ) Cartoon depicting the competitive targeting of HP3 by HP1 and
HP1C, as well as the targeting of HP6 by HP1.
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heterochromatin is not immediately clear from BN80 because this
network lacks any edges between SU(VAR)3-7 and the heterochro-
matin protein cluster centered around HP1. Underrepresentation of
pericentricDNA sequences onourmicroarrays could inpart account
for this. The pericentric targeting of SU(VAR)3-7maybemediated by
a physical interaction with HP1 (Delattre et al. 2000), and possibly
also by HP3, which according to BNI has a predicted weak targeting
interaction with SU(VAR)3-7 (bootstrap score 54%; Supplemental
Data Set 2). The latter scenario is supported by the fact that HP3
and SU(VAR)3-7 both contain a BESS domain, which is a rare di-
merization domain (Jaquet et al. 2002).

How might BRM contribute to the targeting of several DBFs?
First, we investigated whether BRM targets these DBFs by enhanc-
ing their interactions with their binding motifs in DNA. If so, then
depletion of BRM should lead to a loss of the DBFs from motif-
containing binding sites rather than from sites lacking thesemotifs.
Indeed, for both GAF and JRA, we observed that knockdown of brm
caused a significant loss of the correlation between binding of these
factors and the occurrence of the respective motifs (Fig. 5A). Thus,
both proteins require BRM for efficient interaction with their
binding motifs. We could not do the same analysis for SU(VAR)3-7,
because no binding motif is known for this protein.

Next, we considered that BRMmay promote these direct DBF-
DNA contacts by virtue of its ability to open up chromatin (Cairns
2007). To test this hypothesis, we directly measured the effects of
BRM on chromatin accessibility in vivo using freely diffusing DNA
adenine methyltransferase (Dam) as a probe (Gottschling 1992;
Wines et al. 1996; Vogel et al. 2009). We constructed high-resolu-
tion genome-widemaps ofmethylationbyDam, comparing cells in
which BRM was depleted to control-treated cells (Fig. 5B). Indeed,
we found that loss of BRM typically caused a mild decrease of local
chromatin accessibility. Specifically, targets of GAF and JRA that
were also targets of BRM became significantly less accessible than
non-BRM targets (Fig. 5C). This result suggests that BRM mediates
binding of GAF and JRA by virtue of its chromatin remodeling ac-

tivity, making the cognate binding sites of these DBFs more acces-
sible (Fig. 5D).

Taken together, BN80 identifies BRM as an important player
in the targeting of several DBFs. A recent genome-wide study in
yeast also pointed to a central role for chromatin remodeling
complexes in the control of transcription factor activity (Steinfeld
et al. 2007), suggesting that this may be an evolutionarily con-
served mechanism.

Network compartmentalization of regulatory function

Besides the prediction of many specific targeting interactions, BNI
also offers insights into the global organization of the targeting
interaction network. Visualization of the average expression level
of the target genes of each protein in Kc167 cells (the same cell type
in which the chromatin components were mapped) reveals that
the overall network structure is closely linked to regulatory func-
tion (Fig. 6A). Strong repression of gene activity is found in the
subnetwork that includes the PcG proteins, Lamin and histone
H1, in agreement with previous reports (Pickersgill et al. 2006;
Sparmann and van Lohuizen 2006). Highest transcriptional ac-
tivity occurs at genes targeted by acetylatedhistones and byH3K79
and H3K4 methylation, which is also consistent with other data
(Rando 2007). Genes bound by the cluster of heterochromatin
proteins includingHP1 and SU(VAR)3-9 show overall intermediate
expression levels, underscoring the emerging notion that these
proteins are not strong repressors at their natural target genes (de
Wit and van Steensel 2009).

We further investigated the nature of the target genes of each
chromatin component by studying their developmental expres-
sion patterns (Tomancak et al. 2007). Interestingly, the genes
bound by proteins in the different subnetworks show a striking
degree of coregulation during development. For example, genes
expressed in embryonic trunk mesoderm are specifically enriched
among target genes of the protein subnetwork containing MNT,

Figure 4. BRM mediates targeting of GAF, JRA, and SU(VAR)3-7. (A) Western blot of BRM protein after RNAi knockdown of brm. RNAi of white (w),
a gene that is not expressed in Kc cells, served as a control. Asterisk marks a nonspecific band. Lamin was probed as a loading control. (B–D) Changes in
binding levels of GAF, JRA, and SU(VAR)3-7 at BRM target genes (black) and nontarget genes (gray) upon knockdown of brm, relative to control
knockdown. (E ) No significant changes in HP1 relocation after brm knockdown. (F ) brm knockdown does not affect SU(VAR)3-7 binding at hetero-
chromatic genes, defined as HP1 target genes. P-values are according to Wilcoxon tests.
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MAX, and the active histonemarks (Fig. 6B), while genes expressed
in yolk cells are preferential targets of the subnetwork centered
around BRM, CTBP, and MBD-like (Fig. 6C). Various other sets of
tissue-specific genes show a nonhomogeneous distribution across
the network (Supplemental Fig. 3). These results provide evidence
for a substantial degree of compartmentalization of regulatory
function within the chromatin protein network, with different
subnetworks being dedicated to groups of genes with distinct
tissue-specific functions in the developing embryo.

Discussion
Here, we report the first network model of protein targeting in-
teractions in chromatin. Not only does this model predict many
novel targeting interactions, it alsoprovides insights into the overall
architecture of the chromatin protein network. As such, it offers
a powerful framework for tackling the complexity of targeting in-
teractions in chromatin. The merits of BNI are particularly well il-
lustrated by the examples thatwe studied inmore depth: It provides
insight into the previously poorly understood targeting of proteins
with complex genomic distributions [e.g., SU(VAR)3-7], uncovers

novel competitive targeting mechanisms
(e.g., HP1 and HP1C compete for HP3),
and identifies a chromatin remodeling
enzyme (BRM) that is a key player in the
targeting of a broad set of DBFs.

The experimental validation of all
five BNI-predicted targeting interactions
that we tested, together with the strong
overall enrichment of BN80 for known
interactions detected by other assays, in-
dicates that our network model is highly
robust. This robustness is in part due to
the favorable balance between the num-
ber of observations (4380 genes) and the
relatively small number of nodes in the
network (43), unlike some previous BNI
studies of gene networks in which the
number of nodes (i.e., genes) far out-
weighs the number of available obser-
vations (e.g., experimental conditions)
(Friedman et al. 2000; Pe’er et al. 2001).
Despite this robustness, we note that BNI
is probabilistic by nature and has some
intrinsic restrictions (see Methods).

For lack of a gold standard, it is dif-
ficult to assess the number of real target-
ing interactions that are missed by our
network prediction. Not all known bio-
chemical interactions are recoved in
BN80. For example, GRO and RPD3 have
been reported to form a complex (Chen
et al. 1999), yet they are not linked by
BNI. This may be because other interac-
tions are quantitatively dominant, con-
sistent with genetic evidence that GRO
requires interactions with other partners
for its repressive activity (Mannervik and
Levine 1999). SU(VAR)3-7 is known to
be partially located in pericentric het-
erochromatin (Jaquet et al. 2002), but
no high-confidence targeting interaction

with any other heterochromatin protein is predicted by BN80. As
mentioned, this may be because heterochromatic sequences are
underrepresented, and other interactions (particularly with BRM)
dominate the connectivity of SU(VAR)3-7. Finally, we did not de-
tect a targeting interaction between MYC (the product of dm) and
its heterodimerization partner MAX. This is explained by previous
evidence that the endogenous expression level of MAX in Kc cells
may be too low to drive joint binding of MYC and MAX to their
E-box bindingmotif (Orian et al. 2003). Instead, BN80 predicts that
the high mobility group protein D1 may play an unexpected role
in the targeting of MYC.

Besides the targeting interactions that we confirmed experi-
mentally, BN80 predicts several other interactions with strong di-
rectionality that will be worthy of further experimental analysis.
For example, histone H1, a still poorly understood component of
repressive chromatin, is predicted to regulate the targeting of sev-
eral other chromatin components [ESC, LAM, SU(UR), and D1].
Another interesting prediction is that the histone modification
H3K79me2 is regulated by the other ‘‘active’’ marks H3ac and
H3K4me2. Finally, the LAM!LateRep is of particular interest be-
cause late-replicating DNA is typically found near the nuclear

Figure 5. BRM promotes the interaction of JRA and GAF with their binding motifs through en-
hancement of chromatin accessibility. (A) Depletion of BRM causes a reduction in the correlation be-
tween binding and recognition motif occurrence for GAF and JRA, indicating that BRM enhances
binding of these DBFs to their recognitionmotifs. cntrl, control knockdown; brm kd, brm knockdown. (B)
Depletion of BRM causes a slight decrease in chromatin accessibility at BRM target genes. Depicted are
changes in accessibility per DpnI-fragment that overlaps with indicated target or nontarget reporters of
microarrays used for DamID profiles. (C ) Same as B, but for GAF and JRA target genes that are either BRM
targets or nontargets. (D) Cartoon model depicting the targeting of GAF through the combined action
of BRM and GAGA motifs. A similar model may apply to JRA and SU(VAR)3-7. P-values are according to
a test for difference between two dependent correlations (Chen and Popovich 2002) (A) or two-sided
Wilcoxon tests (B,C ).

van Steensel et al.

196 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on February 23, 2010 - Published by genome.cshlp.orgDownloaded from 

http://www.cshlpress.com
http://genome.cshlp.org/


lamina (Hiratani et al. 2008). The strongly directed edge suggests
that LAM (or another closely associated component of the nuclear
lamina) may help to position late-replicating DNA at the nuclear
periphery, or to regulate replication timing. These and other edges
in BN80 represent testable hypotheses for future research.

We note that the limited resolution afforded by cDNA
microarrays does not permit resolution of differential binding
across the length of a gene. This is not a severe limitation for our

analysis because targeting interactions
between, for instance, one protein bind-
ing to transcription start sites and an-
other protein binding to downstream re-
gions of genes may be functionally rel-
evant. Currently, sufficiently broad sets
of high-resolution maps of chromatin
components are unavailable. Once such
high-resolution data sets become avail-
able they will enable the construction of
interaction networks that focus on distinct
genomic features, such as promoters,
enhancers, and coding regions. Bayesian
logic can be extended to the integration
of other types of data (Barash and Fried-
man 2002; Jansen et al. 2003; Djebbari
and Quackenbush 2008), such as known
physical or genetic interactions. We ex-
pect that expansion and increased reso-
lution of the compendium of binding
profiles, together with the inclusion of
additional information,will progressively
lead to an accurate computational model
of the complex network of molecular in-
teractions in chromatin.

Methods

DamID
Generation of new protein location maps
as marked in Table 1 was done by DamID
in Kc167 cells as previously described
(de Wit et al. 2008). Dam-su(Hw), Dam-
Mt2 (DNMT2),Dam-Parp,Dam-Top1, and
BEAF-32-Dam constructs were made for
this study, RPD3 profiles were newly
generated with a published construct
(Moorman et al. 2006), and the DSP1 pro-
file is the average of two previously pub-
lished and four new replicates (de Wit
et al. 2008). Experiments were done in
duplicate or triplicate andnormalized data
were averaged. RNA interference was per-
formedas described (Greil et al. 2007)with
modifications as follows. On day 0, 5 3
106 logarithmically growing cells were
seeded in serum-free BPYE with 150 mg of
dsRNA. After 1 h, 5 mL of BPYE with 10%
fetal calf serum was added. On days 2 and
4, cells were washed with serum-free BPYE
and again treated with dsRNA. On day 5,
cells were transfected with DamID con-
structs or mock transfected for protein
isolation and incubated for 24hwith fresh
dsRNA. brm dsRNA was produced with

primers for amplicon DRSC26226 of the Harvard Drosophila RNAi
Screening Center. NewDamID data sets are available from theNCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
accession number GSE15807.

Accessibility assay
Probing of accessibility by diffusible Dam methylase was per-
formed as for DamID, except that material from white and brm

Figure 6. Examples of compartmentalization of regulatory function in the chromatin network. (A)
BN80 with the same layout as in Figure 2, with nodes colored according to the mean expression level (in
Kc cells) of the target genes of each chromatin component. (B,C ) Same as in A, but node colors
depicting enrichment (yellow) or depletion (blue) of genes that are expressed in embryonic trunk
mesoderm (B) or yolk cells (C ). Node sizes in A–C depict the statistical significance of the observed
expression level (A, two-sided Wilcoxon test) or the observed enrichment or depletion (B,C, two-sided
binomial test), ranging from P > 10!3 (smallest nodes) to P # 10!8 (largest nodes). Tissue expression
data in B and C are from (Tomancak et al. 2007).
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RNAi-treated cells transfected with unfused Dam was co-hybrid-
ized to genomic tiling microarrays (Choksi et al. 2006). Log ratios
of duplicate experiments were loess normalized, median centered,
and averaged. Values from probes fully overlapping the same
DpnI fragments in FlyBase release 5 were averaged. Data are
available from the Gene Expression Omnibus, http://www.ncbi.
nlm.nih.gov/geo/, accession number GSE15807.

BNI
All data preprocessing and statistical analysis was done using the R
package (http://www.r-project.org). The binding profiles (average
log2 ratios) of all chromatin components used in this study were
combined into a single data matrix (Supplemental Data Set 1).
Because the BNI algorithm cannot handle missing values, array
probes with missing data were removed. The resulting matrix has
4380 rows (genes) and 43 columns (chromatin components).

Because BNI on continuous data is computationally expensive,
we first discretized the data by setting the top 5% most strongly
bound genes for each chromatin component to 1 (‘‘target genes’’)
and the remainder to 0 (‘‘nontarget genes’’). The binarized datawere
used as input for the BNI algorithm. See below for a justification of
this discretization scheme. Next, static BNI was performed using
Banjo 2.0 (http://www.cs.duke.edu/;amink/software/banjo/). A file
listing the parameter settings is provided as Supplemental Data
Set 4. We empirically found that more than ;200,000 search iter-
ations typically did not yield any new networks with substantially
better overall network scores; for this reason we limited each search
(i.e., each single bootstrap, see below) to 300,000 cycles. Banjo can
accommodate substantially larger input data sets than the one we
used; for example, dummy tests indicate that an inputmatrix of 300
proteins3 50,000 loci can be processed in;15min on a single CPU
with 10-Gbyte memory.

Bootstrapping
As reviewed elsewhere (Pe’er 2005), exact calculation of the poste-
rior probability of a targeting interaction between two chromatin
components is not feasible. We therefore used a previously de-
scribed nonparametric bootstrapping strategy as an approximation
(Friedman et al. 2000). We ran 1000 Banjo searches (of 300,000
cycles each), each time using as input a data matrix consisting of
all 43 columns (chromatin components), but with 4380 rows se-
lected by random sampling of the original 4380 rows (genes) with
replacement. Thus, we computed 1000 networks, each based on
slightly perturbed input data. These 1000 bootstrap runs required in
total;10 h on a 1.83 GHz dual processor AppleMacMini. Next, for
each possible pair of chromatin components, the occurrence of
the corresponding directed edge in the 1000 Banjo networks was
counted, yielding the bootstrap confidence score for the directed
edge linking this pair of components. The 43 3 43 matrix of con-
fidence scores is available as Supplemental Data Set 2.

Comparison to previously known interactions
In the absence of a gold standard to estimate the performance
of our BNI approach, we used two different public databases as
surrogate reference lists. First, we used the BioGRID database
(Breitkreutz et al. 2008) release 2.0.45, which is a compilation of
known physical and genetic interactions. BioGRID interactions
among the 43 chromatin components are listed in Supplemental
Data Set 5. Second, we systematically searched PubMed (version 28
October 2008) for the co-occurrence of pairs of chromatin com-
ponents mentioned in either the abstract or the title of previous
publications. Supplemental Data Set 5 lists the search terms used

for each chromatin component, and the resulting co-citation fre-
quencies for each pair. Supplemental Figure S1 shows the degrees
of overlap between BN and either BioGRID interactions or PubMed
co-citations, as a function of the bootstrap score cutoff applied.

Optimization of input profile discretization
The discretization of the binding profiles prior to BNI can be done in
various ways, and this may affect the BNI outcome (Smith et al.
2002; Yu et al. 2004). In the absence of a gold standard, we reasoned
that the most optimal discretization scheme should yield a BNwith
thehighest possible overlapwithBioGRID interactions and PubMed
co-citations. We compared seven different discretization schemes.
Four of these schemes used a quantile threshold to binarize the
data into ‘‘target gene’’ (value 1) or ‘‘nontarget gene’’ (value 0) cat-
egories. We compared ‘‘target’’ definitions corresponding to the
90th–100th, 95th–100th, 98th–100th, and 99th–100th percentile
of the binding log ratios for each chromatin component. In addi-
tion, three schemes employed discretization into three categories:
‘‘low’’ (value 0), ‘‘medium’’ (value 1), and ‘‘high’’ (value 2). Here, the
ranges were either the 0th–33rd, 34th–65th, or 66th–100th per-
centile, the 0th–fifth, sixth–94th, and 95th–100th percentile, or the
0th–10th, 11th–89th, and 90th–100th percentile for each chroma-
tin component. For all of these seven schemes we conducted BNI
with 1000 bootstrapping cycles.

To compare these discretization schemes, we calculated
‘‘performance curves’’ that visualize the overlap with BioGRID or
PubMed interactions for every possible bootstrap score cutoff
(Supplemental Fig. S2). An example of such curves for binarized
data based on the 95th percentile threshold (Supplemental Fig.
S2A,B) shows that with an increasing bootstrap cutoff, fewer of the
previously known interactions (listed in the public databases) are
recovered, but at the same time a larger fraction of BNI-predicted
interactions overlaps with previously known interactions, sug-
gesting a higher specificity. Such a trade-off between sensitivity
and specificity is typical of many prediction algorithms. Compar-
ison of performance curves for the seven discretization schemes
(Supplemental Figure S2C,D) indicates that binarization based on
the 95th percentile threshold yields a BN with the most optimal
correspondence to previously known interactions. We therefore
concluded that this particular discretization scheme yields the
most reliable prediction of targeting interactions. This binarization
was also used for the definition of target andnontarget genes in the
analyses shown in Figures 3–6.

Robustness of BNI
The topology of BN80 is meant to evolve as binding data will ac-
cumulate. In the ideal case, all the key components are already in
the network, and the addition of new componentswillmerely turn
predicted direct interactions into indirect ones. However, it is also
conceivable that the addition of a key targeting component will
have dramatic effects on the whole topology of BN80. To assess the
impact of nonavailable data on the topology of BN80, we took the
following approach: Assuming that we started with less than 43
components, we studied the changes caused by progressively
adding new information. Combinations of 1–5 chromatin com-
ponents (nodes) were removed from the original data set (each
time 50 random combinations, except for 1 node, where all 43
nodes were deleted individually), and new networks were con-
structed by BNI, again using a bootstrap confidence threshold of
80%. The change in overlap of these trimmed networks relative to
the original 43-node network (Fig. 2) was calculated and plotted.
To compute the scores, we defined the ‘‘target network’’ as the
original BN80 where the given subset of nodes has been deleted,
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and the ‘‘common subnetwork’’ as the undirected intersection of
the target network and the newly inferred network. The change in
connection (Supplemental Fig. S4A) was defined as the ratio of the
number of differing edges between the inferred network and
the target network (i.e., present in one and absent from the other)
to the number of edges of the target network. The change in ori-
entation (Supplemental Fig. S4B) was defined as the ratio of the
number of edges present in the inferred network and the target
network, but with a different orientation (i.e., oriented in one
andnot in the other, or oriented in an oppositeway) to the number
of edges of the common subnetwork. In this analysis only 100
bootstraps were done for each BNI because 1000 bootstraps would
have required > 3000 CPU hours in total. These results show that
on average, for every added/deleted node, a change of connectivity
occurs on;2% of the edges, and a change of orientation on;1%.
This high robustness suggests that our current predictions on
targeting interactions will likely remain valid when the BN80 is
updated.

Gene expression analysis
Gene expression levels in Kc cells were taken from Pickersgill et al.
(2006). Embryonic tissue gene expression data were taken from
Tomancak et al. (2007). Enrichment of expressed genes among
target gene sets (again defined as the top 5% genes ranked by
binding ratio for each chromatin protein) was calculated using
a two-sided binomial test.

Sequence motif analysis
We used GAGA as the consensus binding motif for GAF (van
Steensel et al. 2003). The consensus motif for JRA was inferred
from in vitro binding data (Perkins et al. 1988) as TG[A/C][C/G]
[A/T][C/A]A.

Some cautionary notes regarding BNI
The use of BNI to model biological regulatory systems is subject to
inherent limitations. Concerning the data presented in this study,
the following points deserve mention. First, many chromatin
components are not yet represented in our compendium of bind-
ing profiles. Such ‘‘hidden variables’’ may affect both the presence
and directionality of some predicted edges in the network. Only
the generation of a complete set of binding profiles for all chro-
matin components will ultimately solve this issue. Second, the
current implementation of our BNI approach does not detect in-
hibitory interactions (i.e., protein A locally prevents the binding of
protein B). Third, the theoretical framework underlying BNI only
allows for themodeling of acyclic directed graphs. As a result, loops
of interactions (e.g., A!B!C!A) are always resolved as a different
topology in the BN.While these artifacts raise the false positive and
false negative rates of BNI, our computational and experimental
evidence suggest that BN80 is strongly enriched in bona fide tar-
geting interactions. As such it can be used as a guide to formulate
useful and testable hypotheses.
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